1887

Abstract

Vectors derived from canine adenovirus type 2 (CAV-2) are attractive candidates for gene therapy and live recombinant vaccines. CAV-2 vectors described thus far have been generated by modifying the virus genome, most notably early regions 1 and 3 or the fiber gene. Modification of these genes was underpinned by previous descriptions of their mRNA and protein-coding sequences. Similarly, the construction of new CAV-2 vectors bearing changes in other genomic regions, in particular many of those expressed late in the viral cycle, will require prior characterization of the corresponding transcriptional units. In this study, we provide a detailed description of the late transcriptional organization of the CAV-2 genome. We examined the major late transcription unit (MLTU) and determined its six families of mRNAs controlled by the putative major late promoter (MLP). All mRNAs expressed from the MLTU had a common non-coding tripartite leader (224 nt) at their 5′ end. In transient transfection assays, the predicted MLP sequence was able to direct luciferase gene expression and the TPL sequence yielded a higher amount of transgene product. Identification of viral transcriptional products following infection confirmed most of the predicted protein-coding regions that were deduced from computer analysis of the CAV-2 genome. These findings contribute to a better understanding of gene expression in CAV-2 and lay the foundation required for genetic modifications aimed at vector optimization.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.007773-0
2009-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/5/1215.html?itemId=/content/journal/jgv/10.1099/vir.0.007773-0&mimeType=html&fmt=ahah

References

  1. Ali H., LeRoy G., Bridge G., Flint S. J. 2007; The adenovirus L4 33-kilodalton protein binds to intragenic sequences of the major late promoter required for late phase-specific stimulation of transcription. J Virol 81:1327–1338 [CrossRef]
    [Google Scholar]
  2. Alonso-Caplen F. V., Katze M. G., Krug R. M. 1988; Efficient transcription, not translation, is dependent on adenovirus tripartite leader sequences at late times of infection. J Virol 62:1606–1616
    [Google Scholar]
  3. Appel M., Bistner S. I., Menegus M., Albert D. A., Carmichael L. E. 1973; Pathogenicity of low-virulence strains of two canine adenovirus types. Am J Vet Res 34:543–550
    [Google Scholar]
  4. Bangari D. S., Mittal S. K. 2006; Development of nonhuman adenoviruses as vaccine vectors. Vaccine 24:849–862 [CrossRef]
    [Google Scholar]
  5. Beltz G. A., Flint S. J. 1979; Inhibition of HeLa cell protein synthesis during adenovirus infection. Restriction of cellular messenger RNA sequences to the nucleus. J Mol Biol 131:353–373 [CrossRef]
    [Google Scholar]
  6. Berkner K. L. 1988; Development of adenovirus vectors for the expression of heterologous genes. Biotechniques 6:616–629
    [Google Scholar]
  7. Brunet L. J., Babiss L. E., Young C. S., Mills D. R. 1987; Mutations in the adenovirus major late promoter: effects on viability and transcription during infection. Mol Cell Biol 7:1091–1100
    [Google Scholar]
  8. Chow L. T., Gelinas R. E., Broker T. R., Roberts R. J. 1977; An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12:1–8 [CrossRef]
    [Google Scholar]
  9. Crawford-Miksza L., Schnurr D. P. 1996; Analysis of 15 adenovirus hexon proteins reveals the location and structure of seven hypervariable regions containing serotype-specific residues. J Virol 70:1836–1844
    [Google Scholar]
  10. Davison A. J., Benko M., Harrach B. 2003; Genetic content and evolution of adenoviruses. J Gen Virol 84:2895–2908 [CrossRef]
    [Google Scholar]
  11. Falvey E., Ziff E. 1983; Sequence arrangement and protein coding capacity of the adenovirus type 2 “i” leader. J Virol 45:185–191
    [Google Scholar]
  12. Fischer L., Tronel J. P., Pardo-David C., Tanner P., Colombet G., Minke J., Audonnet J. C. 2002; Vaccination of puppies born to immune dams with a canine adenovirus-based vaccine protects against a canine distemper virus challenge. Vaccine 20:3485–3497 [CrossRef]
    [Google Scholar]
  13. Hemminki A., Kanerva A., Kremer E. J., Bauerschmitz G. J., Smith B. F., Liu B., Wang M., Desmond R. A., Keriel A. other authors 2003; A canine conditionally replicating adenovirus for evaluating oncolytic virotherapy in a syngeneic animal model. Mol Ther 7:163–173 [CrossRef]
    [Google Scholar]
  14. Honkavuori K. S., Pollard B. D., Rodriguez M. S., Hay R. T., Kemp G. D. 2004; Dual role of the adenovirus pVI C terminus as a nuclear localization signal and activator of the viral protease. J Gen Virol 85:3367–3376 [CrossRef]
    [Google Scholar]
  15. Huang W., Flint S. J. 1998; The tripartite leader sequence of subgroup C adenovirus major late mRNAs can increase the efficiency of mRNA export. J Virol 72:225–235
    [Google Scholar]
  16. Javahery R., Khachi A., Lo K., Zenzie-Gregory B., Smale S. T. 1994; DNA sequence requirements for transcriptional initiator activity in mammalian cells. Mol Cell Biol 14:116–127
    [Google Scholar]
  17. Keriel A., Rene C., Galer C., Zabner J., Kremer E. J. 2006; Canine adenovirus vectors for lung-directed gene transfer: efficacy, immune response, and duration of transgene expression using helper-dependent vectors. J Virol 80:1487–1496 [CrossRef]
    [Google Scholar]
  18. Klonjkowski B., Gilardi-Hebenstreit P., Hadchouel J., Randrianarison V., Boutin S., Yeh P., Perricaudet M., Kremer E. J. 1997; A recombinant E1-deleted canine adenoviral vector capable of transduction and expression of a transgene in human-derived cells and in vivo . Hum Gene Ther 8:2103–2115 [CrossRef]
    [Google Scholar]
  19. Kremer E. J., Boutin S., Chillon M., Danos O. 2000; Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer. J Virol 74:505–512 [CrossRef]
    [Google Scholar]
  20. Lecollinet S., Gavard F., Havenga M. J., Spiller O. B., Lemckert A., Goudsmit J., Eloit M., Richardson J. 2006; Improved gene delivery to intestinal mucosa by adenoviral vectors bearing subgroup B and d fibers. J Virol 80:2747–2759 [CrossRef]
    [Google Scholar]
  21. Liu Y., Zhang S., Ma G., Zhang F., Hu R. 2008; Efficacy and safety of a live canine adenovirus-vectored rabies virus vaccine in swine. Vaccine 26:5368–5372 [CrossRef]
    [Google Scholar]
  22. Logan J., Shenk T. 1984; Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection. Proc Natl Acad Sci U S A 81:3655–3659 [CrossRef]
    [Google Scholar]
  23. Lucher L. A., Symington J. S., Green M. 1986; Biosynthesis and properties of the adenovirus 2 L1-encoded 52,000- and 55,000-Mr proteins. J Virol 57:839–847
    [Google Scholar]
  24. Lutz P., Kedinger C. 1996; Properties of the adenovirus IVa2 gene product, an effector of late-phase-dependent activation of the major late promoter. J Virol 70:1396–1405
    [Google Scholar]
  25. Matthews D. A., Russell W. C. 1994; Adenovirus protein–protein interactions: hexon and protein VI. J Gen Virol 75:3365–3374 [CrossRef]
    [Google Scholar]
  26. Matthews D. A., Russell W. C. 1995; Adenovirus protein–protein interactions: molecular parameters governing the binding of protein VI to hexon and the activation of the adenovirus 23K protease. J Gen Virol 76:1959–1969 [CrossRef]
    [Google Scholar]
  27. Moore M. A., Shenk T. 1988; The adenovirus tripartite leader sequence can alter nuclear and cytoplasmic metabolism of a non-adenovirus mRNA within infected cells. Nucleic Acids Res 16:2247–2262 [CrossRef]
    [Google Scholar]
  28. Ostapchuk P., Anderson M. E., Chandrasekhar S., Hearing P. 2006; The L4 22-kilodalton protein plays a role in packaging of the adenovirus genome. J Virol 80:6973–6981 [CrossRef]
    [Google Scholar]
  29. Parks C. L., Shenk T. 1997; Activation of the adenovirus major late promoter by transcription factors MAZ and Sp1. J Virol 71:9600–9607
    [Google Scholar]
  30. Payet V., Arnauld C., Picault J. P., Jestin A., Langlois P. 1998; Transcriptional organization of the avian adenovirus CELO. J Virol 72:9278–9285
    [Google Scholar]
  31. Pichla-Gollon S. L., Drinker M., Zhou X., Xue F., Rux J. J., Gao G. P., Wilson J. M., Ertl H. C., Burnett R. M., Bergelson J. M. 2007; Structure-based identification of a major neutralizing site in an adenovirus hexon. J Virol 81:1680–1689 [CrossRef]
    [Google Scholar]
  32. Rasmussen U. B., Schlesinger Y., Pavirani A., Mehtali M. 1995; Sequence analysis of the canine adenovirus 2 fiber-encoding gene. Gene 159:279–280 [CrossRef]
    [Google Scholar]
  33. Reddy P. S., Idamakanti N., Zakhartchouk A. N., Baxi M. K., Lee J. B., Pyne C., Babiuk L. A., Tikoo S. K. 1998; Nucleotide sequence, genome organization, and transcription map of bovine adenovirus type 3. J Virol 72:1394–1402
    [Google Scholar]
  34. Reese M. G., Eeckman F. H., Kulp D., Haussler D. 1997; Improved splice site detection in Genie. J Comput Biol 4:311–323 [CrossRef]
    [Google Scholar]
  35. Schagen F. H., Graat H. C., Carette J. E., Vellinga J., van Geer M. A., Hoeben R. C., Dermody T. S., van Beusechem V. W. 2008; Replacement of native adenovirus receptor-binding sites with a new attachment moiety diminishes hepatic tropism and enhances bioavailability in mice. Hum Gene Ther 19:783–794 [CrossRef]
    [Google Scholar]
  36. Schoehn G., El Bakkouri M., Fabry C. M., Billet O., Estrozi L. F., Le L., Curiel D. T., Kajava A. V., Ruigrok R. W., Kremer E. J. 2008; Three-dimensional structure of canine adenovirus serotype 2 capsid. J Virol 82:3192–3203 [CrossRef]
    [Google Scholar]
  37. Shibata R., Shinagawa M., Iida Y., Tsukiyama T. 1989; Nucleotide sequence of E1 region of canine adenovirus type 2. Virology 172:460–467 [CrossRef]
    [Google Scholar]
  38. Soudais C., Boutin S., Hong S. S., Chillon M., Danos O., Bergelson J. M., Boulanger P., Kremer E. J. 2000; Canine adenovirus type 2 attachment and internalization: coxsackievirus–adenovirus receptor, alternative receptors, and an RGD-independent pathway. J Virol 74:10639–10649 [CrossRef]
    [Google Scholar]
  39. Soudais C., Laplace-Builhe C., Kissa K., Kremer E. J. 2001; Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. FASEB J 15:2283–2285
    [Google Scholar]
  40. Tatsis N., Ertl H. C. 2004; Adenoviruses as vaccine vectors. Mol Ther 10:616–629 [CrossRef]
    [Google Scholar]
  41. Tordo N., Foumier A., Jallet C., Szelechowski M., Klonjkowski B., Eloit M. 2008; Canine adenovirus based rabies vaccines. Dev Biol (Basel) 131:467–476
    [Google Scholar]
  42. Tribouley C., Lutz P., Staub A., Kedinger C. 1994; The product of the adenovirus intermediate gene IVa2 is a transcriptional activator of the major late promoter. J Virol 68:4450–4457
    [Google Scholar]
  43. Tsukiyama T., Shibata R., Katayama Y., Shinagawa M. 1988; Transforming genes of canine adenovirus type 2. J Gen Virol 69:2471–2482 [CrossRef]
    [Google Scholar]
  44. van Opijnen T., Kamoschinski J., Jeeninga R. E., Berkhout B. 2004; The human immunodeficiency virus type 1 promoter contains a CATA box instead of a TATA box for optimal transcription and replication. J Virol 78:6883–6890 [CrossRef]
    [Google Scholar]
  45. Vigant F., Descamps D., Jullienne B., Esselin S., Cannault E., Opolon P., Tordjmann T., Vigne E., Perricaudet M., Benihoud K. 2008; Substitution of hexon hypervariable region 5 of adenovirus serotype 5 abrogates blood factor binding and limits gene transfer to liver. Mol Ther 16:1474–1480 [CrossRef]
    [Google Scholar]
  46. Wodrich H., Guan T., Cingolani G., Von Seggern D., Nemerow G., Gerace L. 2003; Switch from capsid protein import to adenovirus assembly by cleavage of nuclear transport signals. EMBO J 22:6245–6255 [CrossRef]
    [Google Scholar]
  47. Xi Q., Cuesta R., Schneider R. J. 2005; Regulation of translation by ribosome shunting through phosphotyrosine-dependent coupling of adenovirus protein 100k to viral mRNAs. J Virol 79:5676–5683 [CrossRef]
    [Google Scholar]
  48. Yang S., Xia X., Qiao J., Liu Q., Chang S., Xie Z., Ju H., Zou X., Gao Y. 2008; Complete protection of cats against feline panleukopenia virus challenge by a recombinant canine adenovirus type 2 expressing VP2 from FPV. Vaccine 26:1482–1487 [CrossRef]
    [Google Scholar]
  49. Zhang S., Liu Y., Fooks A. R., Zhang F., Hu R. 2008; Oral vaccination of dogs ( Canis familiaris ) with baits containing the recombinant rabies-canine adenovirus type-2 vaccine confers long-lasting immunity against rabies. Vaccine 26:345–350 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.007773-0
Loading
/content/journal/jgv/10.1099/vir.0.007773-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error