1887

Abstract

In this study, the binding of the insulator protein CCCTC-binding factor (CTCF) to the region located between Rep* and the C promoter (Cp) of Epstein–Barr virus (EBV) was analysed using chromatin immunoprecipitation and footprinting. CTCF binding was found to be independent of Cp usage in cell lines corresponding to the major EBV latency types. Bisulfite sequencing and an electrophoretic mobility-shift assay (using methylated and unmethylated probes) revealed that CTCF binding was insufficient to induce local CpG demethylation in certain cell lines and was unaffected by CpG methylation in the region between Rep* and Cp. In addition, CTCF binding to the latency promoter, Qp, did not correlate with Qp activity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.007344-0
2009-05-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/5/1183.html?itemId=/content/journal/jgv/10.1099/vir.0.007344-0&mimeType=html&fmt=ahah

References

  1. Altiok, E., Minarovits, J., Hu, L. F., Contreras-Brodin, B., Klein, G. & Ernberg, I. ( 1992; ). Host-cell-phenotype-dependent control of the BCR2/BWR1 promoter complex regulates the expression of Epstein–Barr virus nuclear antigens 2–6. Proc Natl Acad Sci U S A 89, 905–909.[CrossRef]
    [Google Scholar]
  2. Baer, R., Bankier, A. T., Biggin, M. D., Deininger, P. L., Farrel, P. J., Gibson, T. G., Hatfull, G., Hudson, G. S., Satchwell, S. C. & other authors ( 1984; ). DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature 310, 207–211.[CrossRef]
    [Google Scholar]
  3. Bakos, A., Banati, F., Koroknai, A., Takacs, M., Salamon, D., Minarovits-Kormuta, S., Schwarzmann, F., Wolf, H., Niller, H. H. & Minarovits, J. ( 2007; ). High resolution analysis of CpG methylation and in vivo protein–DNA interactions at the alternative Epstein–Barr virus latency promoters Qp and Cp in the nasopharyngeal carcinoma cell line C666-1. Virus Genes 35, 195–202.[CrossRef]
    [Google Scholar]
  4. Banati, F., Koroknai, A., Salamon, D., Takacs, M., Minarovits-Kormuta, S., Wolf, H., Niller, H. H. & Minarovits, J. ( 2008; ). CpG-methylation silences the activity of the RNA polymerase III transcribed EBER-1 promoter of Epstein–Barr virus. FEBS Lett 582, 705–709.[CrossRef]
    [Google Scholar]
  5. Busson, P., Ganem, G., Flores, P., Muqneret, F., Clausse, B., Caillou, B., Braham, K., Wakasugi, H., Lipinski, M. & Tursz, T. ( 1988; ). Establishment and characterization of three transplantable EBV-containing nasopharyngeal carcinomas. Int J Cancer 42, 599–606.[CrossRef]
    [Google Scholar]
  6. Chau, C. M., Zhang, X. Y., McMahon, S. B. & Lieberman, P. M. ( 2006; ). Regulation of Epstein–Barr virus latency type by the chromatin boundary factor CTCF. J Virol 80, 5723–5732.[CrossRef]
    [Google Scholar]
  7. Cheung, S. T., Huang, D. P., Hui, A. B., Lo, K. W., Ko, C. W., Tsang, Y. S., Wong, N., Whitney, B. M. & Lee, J. C. ( 1999; ). Nasopharyngeal carcinoma cell line (C666-1) consistently harbouring Epstein–Barr virus. Int J Cancer 83, 121–126.[CrossRef]
    [Google Scholar]
  8. Day, L., Chau, C. M., Nebozhyn, M., Rennekamp, A. J., Showe, M. & Lieberman, P. M. ( 2007; ). Chromatin profiling of Epstein–Barr virus latency control region. J Virol 81, 6389–6401.[CrossRef]
    [Google Scholar]
  9. Ernberg, I., Falk, K., Minarovits, J., Busson, P., Tursz, T., Masucci, M. G. & Klein, G. ( 1989; ). The role of methylation in the phenotype-dependent modulation of Epstein–Barr nuclear antigen 2 and latent membrane protein genes in cells latently infected with Epstein–Barr virus. J Gen Virol 70, 2989–3002.[CrossRef]
    [Google Scholar]
  10. Falk, K. I., Szekely, L., Aleman, A. & Ernberg, I. ( 1998; ). Specific methylation patterns in two control regions of Epstein–Barr virus latency: the LMP-1-coding upstream regulatory region and an origin of DNA replication (oriP). J Virol 72, 2969–2974.
    [Google Scholar]
  11. Fejer, G., Koroknai, A., Banati, F., Györy, I., Salamon, D., Wolf, H., Niller, H. H. & Minarovits, J. ( 2008; ). Latency type-specific distribution of epigenetic marks at the alternative promoters Cp and Qp of Epstein–Barr virus. J Gen Virol 89, 1364–1370.[CrossRef]
    [Google Scholar]
  12. Filippova, G. N. ( 2008; ). Genetics and epigenetics of the multifunctional protein CTCF. Curr Top Dev Biol 80, 337–360.
    [Google Scholar]
  13. Gerle, B., Koroknai, A., Fejer, G., Bakos, A., Banati, F., Szenthe, K., Wolf, H., Niller, H. H., Minarovits, J. & Salamon, D. ( 2007; ). Acetylated histone H3 and H4 mark the upregulated LMP2A promoter of Epstein–Barr virus in lymphoid cells. J Virol 81, 13242–13247.[CrossRef]
    [Google Scholar]
  14. Gregory, C. D., Rowe, M. & Rickinson, A. B. ( 1990; ). Different Epstein–Barr virus–B cell interactions in phenotypically distinct clones of a Burkitt's lymphoma cell line. J Gen Virol 71, 1481–1495.[CrossRef]
    [Google Scholar]
  15. Jones, M. D., Foster, L., Sheedy, T. & Griffin, B. E. ( 1984; ). The EB virus genome in Daudi Burkitt's lymphoma cells has a deletion similar to that observed in a non-transforming strain (P3HR-1) of the virus. EMBO J 3, 813–821.
    [Google Scholar]
  16. Kavathas, P., Bach, F. H. & DeMars, R. ( 1980; ). Gamma ray-induced loss of expression of HLA and glyoxalase I alleles in lymphoblastoid cells. Proc Natl Acad Sci U S A 77, 4251–4255.[CrossRef]
    [Google Scholar]
  17. Lenoir, G. M., Vuillaume, M. & Bonnardel, C. ( 1985; ). The use of lymphomatous and lymphoblastoid cell lines in the study of Burkitt's lymphoma. IARC Sci Publ 60, 309–318.
    [Google Scholar]
  18. Liebowitz, D. ( 1998; ). Epstein–Barr virus pathogenesis. In Human Tumor Viruses, pp. 173–199. Edited by D. J. McCance. Washington, DC: American Society for Microbiology.
  19. Minarovits, J., Minarovits-Kormuta, S., Ehlin-Henriksson, B., Falk, K., Klein, G. & Ernberg, I. ( 1991; ). Host cell phenotype-dependent methylation patterns of Epstein–Barr virus DNA. J Gen Virol 72, 1591–1599.[CrossRef]
    [Google Scholar]
  20. Minarovits, J., Hu, L. F., Marcsek, Z., Minarovits-Kormuta, S., Klein, G. & Ernberg, I. ( 1992; ). RNA polymerase III-transcribed EBER 1 and 2 transcription units are expressed and hypomethylated in the major Epstein–Barr virus-carrying cell types. J Gen Virol 73, 1687–1692.[CrossRef]
    [Google Scholar]
  21. Mukhopadhyay, R., Yu, W., Whitehead, J., Xu, J., Lezcano, M., Pack, S., Kanduri, C., Kanduri, M., Ginjala, V. & other authors ( 2004; ). The binding sites for the chromatin insulator protein CTCF map to DNA methylation-free domains genome-wide. Genome Res 14, 1594–1602.[CrossRef]
    [Google Scholar]
  22. Niller, H. H., Salamon, D., Takacs, M., Uhlig, J., Wolf, H. & Minarovits, J. ( 2001; ). Protein–DNA interaction and CpG methylation at rep*vIL-10p of latent Epstein–Barr virus genomes in lymphoid cell lines. Biol Chem 382, 1411–1419.
    [Google Scholar]
  23. Niller, H. H., Salamon, D., Ilg, K., Koroknai, A., Banati, F., Bauml, G., Rücker, O. L., Schwarzmann, F., Wolf, H. & Minarovits, J. ( 2003; ). The in vivo binding site for oncoprotein c-Myc in the promoter for Epstein–Barr virus (EBV) encoding RNA (EBER) 1 suggests a specific role for EBV in lymphomagenesis. Med Sci Monit 9, 1–9.
    [Google Scholar]
  24. Ohlsson, R., Renkawitz, R. & Lobanenkov, V. ( 2001; ). CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet 17, 520–527.[CrossRef]
    [Google Scholar]
  25. Robertson, K. D. & Ambinder, R. F. ( 1997; ). Methylation of the Epstein–Barr virus genome in normal lymphocytes. Blood 90, 4480–4484.
    [Google Scholar]
  26. Robertson, K. D., Hayward, S. D., Ling, P. D., Samid, D. & Ambinder, R. F. ( 1995; ). Transcriptional activation of the Epstein–Barr virus latency C promoter after 5-azacytidine treatment: evidence that demethylation at a single CpG site is crucial. Mol Cell Biol 15, 6150–6159.
    [Google Scholar]
  27. Salamon, D., Takacs, M., Myöhänen, S., Marcsek, Z., Berencsi, G. & Minarovits, J. ( 2000; ). De novo DNA methylation at nonrandom founder sites 5′ from an unmethylated minimal origin of DNA replication in latent Epstein–Barr virus genomes. Biol Chem 381, 95–105.
    [Google Scholar]
  28. Salamon, D., Takacs, M., Ujvari, D., Uhlig, J., Wolf, H., Minarovits, J. & Niller, H. H. ( 2001; ). Protein–DNA binding and CpG methylation at nucleotide resolution of latency-associated promoters Qp, Cp and LMP1p of Epstein–Barr virus. J Virol 75, 2584–2596.[CrossRef]
    [Google Scholar]
  29. Salamon, D., Takacs, M., Schwarzmann, F., Wolf, H., Minarovits, J. & Niller, H. H. ( 2003; ). High-resolution methylation analysis and in vivo protein–DNA binding at the promoter of the viral oncogene LMP2A in B cell lines carrying latent Epstein–Barr virus genomes. Virus Genes 27, 57–66.[CrossRef]
    [Google Scholar]
  30. Schaefer, B. C., Strominger, J. L. & Speck, S. H. ( 1997; ). Host-cell-determined methylation of specific Epstein–Barr virus promoters regulates the choice between distinct viral latency programs. Mol Cell Biol 17, 364–377.
    [Google Scholar]
  31. Takacs, M., Salamon, D., Myöhänen, S., Li, H., Segesdi, J., Ujvari, D., Uhlig, J., Niller, H. H., Wolf, H. & other authors ( 2001; ). Epigenetics of latent Epstein–Barr virus genomes: high resolution methylation analysis of the bidirectional promoter region of latent membrane protein 1 and latent membrane protein 2B genes. Biol Chem 382, 699–705.
    [Google Scholar]
  32. Tao, Q., Robertson, K. D., Manns, A., Hildesheim, A. & Ambinder, R. F. ( 1998; ). The Epstein–Barr virus major latent promoter Qp is constitutively active, hypomethylated, and methylation sensitive. J Virol 72, 7075–7083.
    [Google Scholar]
  33. Walls, D. & Perricaudet, M. ( 1991; ). Novel downstream elements upregulate transcription initiated from an Epstein–Barr virus latent promoter. EMBO J 10, 143–151.
    [Google Scholar]
  34. Woisetschlaeger, M., Strominger, J. L. & Speck, S. H. ( 1989; ). Mutually exclusive use of viral promoters in Epstein–Barr virus latently infected lymphocytes. Proc Natl Acad Sci U S A 86, 6498–6502.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.007344-0
Loading
/content/journal/jgv/10.1099/vir.0.007344-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error