1887

Abstract

Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen infecting most individuals worldwide. The majority of HSV-1-infected individuals have no clinical symptoms but shed HSV-1 asymptomatically in saliva. Recent phylogenetic analyses of HSV-1 have defined three genetic clades (A–C) and recombinants thereof. These data have all been based on clinical HSV-1 isolates and do not cover genetic variation of asymptomatically shed HSV-1. The primary goal of this study was to investigate such variation. A total of 648 consecutive saliva samples from five HSV-1-infected volunteers was collected. Asymptomatic shedding was detected on 7.6 % of the days from four subjects. The HSV-1 genome loads were quantified with real-time PCR and varied from 1×10 to 2.8×10 copies of virus DNA (ml saliva). Phylogenetic network analyses and bootscanning were performed on asymptomatically shed HSV-1. The analyses were based on DNA sequencing of the glycoprotein I gene, and also of the glycoprotein E gene for putative recombinants. For two individuals with clinical HSV-1 infection, the same HSV-1 strain was shed asymptomatically as induced clinical lesions, and sequence analyses revealed that these strains clustered distinctly to clades A and B, respectively. For one of the subjects with no clinical HSV-1 infection, a recombinant strain was identified. The other truly asymptomatic individual shed evolutionarily distinct HSV-1 strains on two occasions. The first strain was classified as a recombinant and the other strain clustered in clade A. High replication rates of different strains in the same person may facilitate the creation of recombinant clinical HSV-1 strains.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.007070-0
2009-03-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/3/559.html?itemId=/content/journal/jgv/10.1099/vir.0.007070-0&mimeType=html&fmt=ahah

References

  1. Augenbraun, M., Corey, L., Reichelderfer, P., Wright, D. J., Burns, D., Koelle, D. M., Robison, E. & Cohen, M. ( 2001; ). Herpes simplex virus shedding and plasma human immunodeficiency virus RNA levels in coinfected women. Clin Infect Dis 33, 885–890.[CrossRef]
    [Google Scholar]
  2. Bowden, R., Sakaoka, H., Donnelly, P. & Ward, R. ( 2004; ). High recombination rate in herpes simplex virus type 1 natural populations suggests significant co-infection. Infect Genet Evol 4, 115–123.[CrossRef]
    [Google Scholar]
  3. Bower, J. R., Mao, H., Durishin, C., Rozenbom, E., Detwiler, M., Rempinski, D., Karban, T. L. & Rosenthal, K. S. ( 1999; ). Intrastrain variants of herpes simplex virus type 1 isolated from a neonate with fatal disseminated infection differ in the ICP34.5 gene, glycoprotein processing, and neuroinvasiveness. J Virol 73, 3843–3853.
    [Google Scholar]
  4. Bruen, T. C., Philippe, H. & Bryant, D. ( 2006; ). A simple and robust statistical test for detecting the presence of recombination. Genetics 172, 2665–2681.
    [Google Scholar]
  5. Centifanto-Fitzgerald, Y. M., Varnell, E. D. & Kaufman, H. E. ( 1982; ). Initial herpes simplex virus type 1 infection prevents ganglionic superinfection by other strains. Infect Immun 35, 1125–1132.
    [Google Scholar]
  6. Cowan, F. M., Johnson, A. M., Ashley, R., Corey, L. & Mindel, A. ( 1996; ). Relationship between antibodies to herpes simplex virus (HSV) and symptoms of HSV infection. J Infect Dis 174, 470–475.[CrossRef]
    [Google Scholar]
  7. Felsenstein, J. & Yokoyama, S. ( 1976; ). The evolutionary advantage of recombination. II. Individual selection for recombination. Genetics 83, 845–859.
    [Google Scholar]
  8. Huson, D. H. ( 1998; ). SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73.[CrossRef]
    [Google Scholar]
  9. Kaufman, H. E., Azcuy, A. M., Varnell, E. D., Sloop, G. D., Thompson, H. W. & Hill, J. M. ( 2005; ). HSV-1 DNA in tears and saliva of normal adults. Invest Ophthalmol Vis Sci 46, 241–247.[CrossRef]
    [Google Scholar]
  10. Keightley, P. D. & Otto, S. P. ( 2006; ). Interference among deleterious mutations favours sex and recombination in finite populations. Nature 443, 89–92.[CrossRef]
    [Google Scholar]
  11. Lafferty, W. E., Downey, L., Celum, C. & Wald, A. ( 2000; ). Herpes simplex virus type 1 as a cause of genital herpes: impact on surveillance and prevention. J Infect Dis 181, 1454–1457.[CrossRef]
    [Google Scholar]
  12. Lewis, M. E., Leung, W. C., Jeffrey, V. M. & Warren, K. G. ( 1984; ). Detection of multiple strains of latent herpes simplex virus type 1 within individual human hosts. J Virol 52, 300–305.
    [Google Scholar]
  13. Löwhagen, G.-B., Tunbäck, P., Andersson, K., Bergström, T. & Johannisson, G. ( 2000; ). First episodes of genital herpes in a Swedish STD population: a study of epidemiology and transmission by the use of herpes simplex virus (HSV) typing and specific serology. Sex Transm Infect 76, 179–182.[CrossRef]
    [Google Scholar]
  14. Lowhagen, G. B., Bonde, E., Eriksson, B., Nordin, P., Tunback, P. & Krantz, I. ( 2002; ). Self-reported herpes labialis in a Swedish population. Scand J Infect Dis 34, 664–667.[CrossRef]
    [Google Scholar]
  15. Mador, N., Panet, A. & Steiner, I. ( 2002; ). The latency-associated gene of herpes simplex virus type 1 (HSV-1) interferes with superinfection by HSV-1. J Neurovirol 8 (Suppl. 2), 97–102.[CrossRef]
    [Google Scholar]
  16. Meignier, B., Norrild, B. & Roizman, B. ( 1983; ). Colonization of murine ganglia by a superinfecting strain of herpes simplex virus. Infect Immun 41, 702–708.
    [Google Scholar]
  17. Namvar, L., Olofsson, S., Bergström, T. & Lindh, M. ( 2005; ). Detection and typing of herpes simplex virus (HSV) in mucocutaneous samples by TaqMan PCR targeting a gB segment homologous for types 1 and 2. J Clin Microbiol 43, 2058–2064.[CrossRef]
    [Google Scholar]
  18. Norberg, P., Bergström, T., Rekabdar, E., Lindh, M. & Liljeqvist, J.-A. ( 2004; ). Phylogenetic analysis of clinical herpes simplex virus type 1 isolates identified three genetic groups and recombinant viruses. J Virol 78, 10755–10764.[CrossRef]
    [Google Scholar]
  19. Norberg, P., Liljeqvist, J. A., Bergstrom, T., Sammons, S., Schmid, D. S. & Loparev, V. N. ( 2006; ). Complete-genome phylogenetic approach to varicella-zoster virus evolution: genetic divergence and evidence for recombination. J Virol 80, 9569–9576.[CrossRef]
    [Google Scholar]
  20. Norberg, P., Olofsson, S., Agervik Tarp, M., Clausen, H., Bergström, T. & Liljeqvist, J.-A. ( 2007; ). Glycoprotein I of herpes simplex virus type 1 contains a unique polymorphic tandem-repeated mucin region. J Gen Virol 88, 1683–1688.[CrossRef]
    [Google Scholar]
  21. Roest, R. W., Carman, W. F., Maertzdorf, J., Scoular, A., Harvey, J., Kant, M., Van Der Meijden, W. I., Verjans, G. M. & Osterhaus, A. D. ( 2004; ). Genotypic analysis of sequential genital herpes simplex virus type 1 (HSV-1) isolates of patients with recurrent HSV-1 associated genital herpes. J Med Virol 73, 601–604.[CrossRef]
    [Google Scholar]
  22. Sacks, S. L., Griffiths, P. D., Corey, L., Cohen, C., Cunningham, A., Dusheiko, G. M., Self, S., Spruance, S., Stanberry, L. R. & other authors ( 2004; ). Introduction: is viral shedding a surrogate marker for transmission of genital herpes? Antiviral Res 63 (Suppl. 1), S3–S9.[CrossRef]
    [Google Scholar]
  23. Sakaoka, H., Kurita, K., Iida, Y., Takada, S., Umene, K., Kim, Y. T., Ren, C. S. & Nahmias, A. J. ( 1994; ). Quantitative analysis of genomic polymorphism of herpes simplex virus type 1 strains from six countries: studies of molecular evolution and molecular epidemiology of the virus. J Gen Virol 75, 513–527.[CrossRef]
    [Google Scholar]
  24. Scott, D. A., Coulter, W. A. & Lamey, P. J. ( 1997; ). Oral shedding of herpes simplex virus type 1: a review. J Oral Pathol Med 26, 441–447.[CrossRef]
    [Google Scholar]
  25. Shimeld, C., Whiteland, J. L., Nicholls, S. M., Grinfeld, E., Easty, D. L., Gao, H. & Hill, T. J. ( 1995; ). Immune cell infiltration and persistence in the mouse trigeminal ganglion after infection of the cornea with herpes simplex virus type 1. J Neuroimmunol 61, 7–16.[CrossRef]
    [Google Scholar]
  26. Smith, J. S. & Robinson, N. J. ( 2002; ). Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. J Infect Dis 186 (Suppl. 1), S3–S28.[CrossRef]
    [Google Scholar]
  27. Spruance, S. L. ( 1984; ). Pathogenesis of herpes simplex labialis: excretion of virus in the oral cavity. J Clin Microbiol 19, 675–679.
    [Google Scholar]
  28. Tateishi, K., Toh, Y., Minagawa, H. & Tashiro, H. ( 1994; ). Detection of herpes simplex virus (HSV) in the saliva from 1,000 oral surgery outpatients by the polymerase chain reaction (PCR) and virus isolation. J Oral Pathol Med 23, 80–84.[CrossRef]
    [Google Scholar]
  29. Terasaki, S. ( 1996; ). Latent multiple infections by herpes simplex virus type 1. Kurume Med J 43, 127–136.[CrossRef]
    [Google Scholar]
  30. Theil, D., Paripovic, I., Derfuss, T., Herberger, S., Strupp, M., Arbusow, V. & Brandt, T. ( 2003; ). Dually infected (HSV-1/VZV) single neurons in human trigeminal ganglia. Ann Neurol 54, 678–682.[CrossRef]
    [Google Scholar]
  31. Thiry, E., Meurens, F., Muylkens, B., McVoy, M., Gogev, S., Thiry, J., Vanderplasschen, A., Epstein, A., Keil, G. & Schynts, F. ( 2005; ). Recombination in alphaherpesviruses. Rev Med Virol 15, 89–103.[CrossRef]
    [Google Scholar]
  32. Thomas, E., Lycke, E. & Vahlne, A. ( 1985; ). Retrieval of latent herpes simplex virus type 1 genetic information from murine trigeminal ganglia by superinfection with heterotypic virus in vivo. J Gen Virol 66, 1763–1770.[CrossRef]
    [Google Scholar]
  33. Tullo, A. B., Shimeld, C., Blyth, W. A., Hill, T. J. & Easty, D. L. ( 1982; ). Spread of virus and distribution of latent infection following ocular herpes simplex in the non-immune and immune mouse. J Gen Virol 63, 95–101.[CrossRef]
    [Google Scholar]
  34. Umene, K. ( 1999; ). Mechanism and application of genetic recombination in herpesviruses. Rev Med Virol 9, 171–182.[CrossRef]
    [Google Scholar]
  35. Umene, K., Yamanaka, F., Oohashi, S., Koga, C. & Kameyama, T. ( 2007; ). Detection of differences in genomic profiles between herpes simplex virus type 1 isolates sequentially separated from the saliva of the same individual. J Clin Virol 39, 266–270.[CrossRef]
    [Google Scholar]
  36. Whitley, R., Lakeman, A. D., Nahmias, A. & Roizman, B. ( 1982; ). DNA restriction-enzyme analysis of herpes simplex virus isolates obtained from patients with encephalitis. N Engl J Med 307, 1060–1062.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.007070-0
Loading
/content/journal/jgv/10.1099/vir.0.007070-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error