1887

Abstract

A distinctive feature of the cytomegaloviruses is their wide tissue tropism, demonstrated by the infection of many organs and cell types in an active infection. However, in experimental models of systemic infection, the earliest stages of infection are not well characterized, and it is unclear whether only certain cells are initially infected. Using a recombinant murine cytomegalovirus (MCMV) expressing green fluorescent protein (GFP), we tracked viral infection after systemic administration via intraperitoneal injection and showed that specific cells are infected within the first hours. We provide evidence that MCMV traffics as free virus from the peritoneal cavity into the mediastinal lymphatics, providing access to the bloodstream. We demonstrate that MCMV productively infected CD169 subcapsular sinus macrophages in the mediastinal lymph nodes, ER-TR7 CD29 reticular fibroblasts in the spleen and hepatocytes. Infection in the spleen followed a distinctive pattern, beginning in the marginal zone at 6 h and spreading into the red pulp by 17 h. By 48 h after infection, there was widespread infection in the spleen and liver with degeneration of infected cells. In addition, infected dendritic cells appeared in the white pulp of the spleen at 48 h post-infection. On the other hand, cowpox virus showed a different pattern of infectivity in the spleen and liver. Thus, early MCMV infection produces a distinct pattern of infection of selective cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.006668-0
2009-01-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/1/33.html?itemId=/content/journal/jgv/10.1099/vir.0.006668-0&mimeType=html&fmt=ahah

References

  1. Abu-Hijleh, M. F., Habbal, O. A. & Moqattash, S. T. ( 1995; ). The role of the diaphragm in lymphatic absorption from the peritoneal cavity. J Anat 186, 453–467.
    [Google Scholar]
  2. Andoniou, C. E., van Dommelen, S. L. H., Voigt, V., Andrews, D. M., Brizard, G., Asselin-Paturel, C., Delale, T., Stacey, K. J., Trinchieri, G. & Degli-Esposti, M. A. ( 2005; ). Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity. Nat Immunol 6, 1011–1019.[CrossRef]
    [Google Scholar]
  3. Andrews, D. M., Andoniou, C. E., Granucci, F., Ricciardi-Castagnoli, P. & Degli-Esposti, M. A. ( 2001; ). Infection of dendritic cells by murine cytomegalovirus induces functional paralysis. Nat Immunol 2, 1077–1084.[CrossRef]
    [Google Scholar]
  4. Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. & Lanier, L. L. ( 2002; ). Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1323–1326.[CrossRef]
    [Google Scholar]
  5. Backer, M. V., Levashova, Z., Patel, V., Jehning, B. T., Claffey, K., Blankenberg, F. G. & Backer, J. M. ( 2007; ). Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med 13, 504–509.[CrossRef]
    [Google Scholar]
  6. Benedict, C. A., De Trez, C., Schneider, K., Ha, S., Patterson, G. & Ware, C. F. ( 2006; ). Specific remodeling of splenic architecture by cytomegalovirus. PLoS Pathog 2, e16 [CrossRef]
    [Google Scholar]
  7. Brown, M. G., Dokun, A. O., Heusel, J. W., Smith, H. R., Beckman, D. L., Blattenberger, E. A., Dubbelde, C. E., Stone, L. R., Scalzo, A. A. & Yokoyama, W. M. ( 2001; ). Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292, 934–937.[CrossRef]
    [Google Scholar]
  8. Buller, R. M. & Palumbo, G. J. ( 1991; ). Poxvirus pathogenesis. Microbiol Rev 55, 80–122.
    [Google Scholar]
  9. Byun, M., Wang, X., Pak, M., Hansen, T. H. & Yokoyama, W. M. ( 2007; ). Cowpox virus exploits the endoplasmic reticulum retention pathway to inhibit MHC class I transport to the cell surface. Cell Host Microbe 2, 306–315.[CrossRef]
    [Google Scholar]
  10. Carrasco, Y. R. & Batista, F. D. ( 2007; ). B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27, 160–171.[CrossRef]
    [Google Scholar]
  11. Daniels, K. A., Devora, G., Lai, W. C., O'Donnell, C. L., Bennett, M. & Welsh, R. M. ( 2001; ). Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H. J Exp Med 194, 29–44.[CrossRef]
    [Google Scholar]
  12. Henry, S. C., Schmader, K., Brown, T. T., Miller, S. E., Howell, D. N., Daley, G. G. & Hamilton, J. D. ( 2000; ). Enhanced green fluorescent protein as a marker for localizing murine cytomegalovirus in acute and latent infection. J Virol Methods 89, 61–73.[CrossRef]
    [Google Scholar]
  13. Jordan, M. C. & Takagi, J. L. ( 1983; ). Virulence characteristics of murine cytomegalovirus in cell and organ cultures. Infect Immun 41, 841–843.
    [Google Scholar]
  14. Junqueira, L. C., Carneiro, J. & Kelley, R. O. ( 1998; ). Basic Histology, 9th edn. Stamford: Appleton & Lange.
  15. Junt, T., Moseman, E. A., Iannacone, M., Massberg, S., Lang, P. A., Boes, M., Fink, K., Henrickson, S. E., Shayakhmetov, D. M. & other authors ( 2007; ). Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110–114.[CrossRef]
    [Google Scholar]
  16. Katzenstein, D. A., Yu, G. S. & Jordan, M. C. ( 1983; ). Lethal infection with murine cytomegalovirus after early viral replication in the spleen. J Infect Dis 148, 406–411.[CrossRef]
    [Google Scholar]
  17. Krmpotic, A., Bubic, I., Polic, B., Lucin, P. & Jonjic, S. ( 2003; ). Pathogenesis of murine cytomegalovirus infection. Microbes Infect 5, 1263–1277.[CrossRef]
    [Google Scholar]
  18. Lee, S. H., Girard, S., Macina, D., Busa, M., Zafer, A., Belouchi, A., Gros, P. & Vidal, S. M. ( 2001; ). Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat Genet 28, 42–45.
    [Google Scholar]
  19. Mebius, R. E. & Kraal, G. ( 2005; ). Structure and function of the spleen. Nat Rev Immunol 5, 606–616.[CrossRef]
    [Google Scholar]
  20. Mercer, J. A., Wiley, C. A. & Spector, D. H. ( 1988; ). Pathogenesis of murine cytomegalovirus infection: identification of infected cells in the spleen during acute and latent infections. J Virol 62, 987–997.
    [Google Scholar]
  21. Mocarski, E. S., Shenk, T. & Pass, R. F. ( 2007; ). Cytomegaloviruses. In Fields Virology, 5th edn, pp. 2701–2772. Edited by D. Knipe & P. Howley. Philadelphia: Lippincott Williams & Wilkins.
  22. Orange, J. S. & Biron, C. A. ( 1996; ). Characterization of early IL-12, IFN-αβ, and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection. J Immunol 156, 4746–4756.
    [Google Scholar]
  23. Phan, T. G., Grigorova, I., Okada, T. & Cyster, J. G. ( 2007; ). Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol 8, 992–1000.[CrossRef]
    [Google Scholar]
  24. Sacher, T., Podlech, J., Mohr, C. A., Jordan, S., Ruzsics, Z., Reddehase, M. J. & Koszinowski, U. H. ( 2008; ). The major virus-producing cell type during murine cytomegalovirus infection, the hepatocyte, is not the source of virus dissemination in the host. Cell Host Microbe 3, 263–272.[CrossRef]
    [Google Scholar]
  25. Scalzo, A. A., Fitzgerald, N. A., Simmons, A., La Vista, A. B. & Shellam, G. R. ( 1990; ). Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J Exp Med 171, 1469–1483.[CrossRef]
    [Google Scholar]
  26. Schneider, K., Loewendorf, A., De Trez, C., Fulton, J., Rhode, A., Shumway, H., Ha, S., Patterson, G., Pfeffer, K. & other authors ( 2008; ). Lymphotoxin-mediated crosstalk between B cells and splenic stroma promotes the initial type I interferon response to cytomegalovirus. Cell Host Microbe 3, 67–76.[CrossRef]
    [Google Scholar]
  27. Shanley, J. D., Biczak, L. & Forman, S. J. ( 1993; ). Acute murine cytomegalovirus infection induces lethal hepatitis. J Infect Dis 167, 264–269.[CrossRef]
    [Google Scholar]
  28. Shellam, G. R., Redwood, A. J., Smith, L. M. & Gorman, S. ( 2006; ). Mouse cytomegalovirus and other herpesviruses. In The Mouse in Biomedical Research, 2nd edn, pp. 1–48. Edited by J. Fox, S. Barthold, M. Davisson, C. Newcomer, & F. Quimby. New York: Academic Press.
  29. Shibata, S., Yamaguchi, S., Kaseda, M., Ichihara, N., Hayakawa, T. & Asari, M. ( 2007; ). The time course of lymphatic routes emanating from the peritoneal cavity in rats. Anat Histol Embryol 36, 78–82.[CrossRef]
    [Google Scholar]
  30. Shinohara, H. ( 1997; ). Lymphatic system of the mouse diaphragm: morphology and function of the lymphatic sieve. Anat Rec 249, 6–15.[CrossRef]
    [Google Scholar]
  31. Sinzger, C., Grefte, A., Plachter, B., Gouw, A., The, T. H. & Jahn, G. ( 1995; ). Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J Gen Virol 76, 741–750.[CrossRef]
    [Google Scholar]
  32. Smith, H. R., Heusel, J. W., Mehta, I. K., Kim, S., Dorner, B. G., Naidenko, O. V., Iizuka, K., Furukawa, H., Beckman, D. L. & other authors ( 2002; ). Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci U S A 99, 8826–8831.[CrossRef]
    [Google Scholar]
  33. Stoddart, C. A., Cardin, R. D., Boname, J. M., Manning, W. C., Abenes, G. B. & Mocarski, E. S. ( 1994; ). Peripheral blood mononuclear phagocytes mediate dissemination of murine cytomegalovirus. J Virol 68, 6243–6253.
    [Google Scholar]
  34. Van den Broeck, W. V., Derore, A. & Simoens, P. ( 2006; ). Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J Immunol Methods 312, 12–19.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.006668-0
Loading
/content/journal/jgv/10.1099/vir.0.006668-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 33 - 43

i.p. and i.v. injection of MCMV–GFP produced similar liver infection patterns

MCMV does not infect CD146 endothelial cells in the spleen

CPXV-infected macrophages in the liver and LNs [Single PDF file](190 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error