1887

Abstract

Luciferase-based imaging allows a global view of microbial pathogenesis. We applied this technique to gammaherpesvirus infection by inserting a luciferase expression cassette into the genome of murine herpesvirus-4 (MuHV-4). The recombinant virus strongly expressed luciferase in lytically infected cells without significant attenuation. We used it to compare different routes of virus inoculation. After intranasal infection of anaesthetized mice, luciferase was expressed in the nose and lungs for 7–10 days and in lymphoid tissue, most consistently the superficial cervical lymph nodes, for up to 30 days. Gastrointestinal infection was not observed. Intraperitoneal infection was very different to intranasal, with strong luciferase expression in the liver, kidneys, intestines, reproductive tract and spleen, but none in the nose or lungs. The nose has not previously been identified as a site of MuHV-4 infection. After intranasal infection of non-anaesthetized mice, it was the only site of non-lymphoid luciferase expression. Nevertheless, lymphoid colonization and persistence were still established, even at low inoculation doses. In contrast, virus delivered orally was very poorly infectious. Inoculation route therefore had a major impact on pathogenesis. Low dose intranasal infection without anaesthesia seems most likely to mimic natural transmission, and may therefore be particularly informative about normal viral gene functions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.006569-0
2009-01-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/1/21.html?itemId=/content/journal/jgv/10.1099/vir.0.006569-0&mimeType=html&fmt=ahah

References

  1. Adler, H., Messerle, M., Wagner, M. & Koszinowski, U. H. ( 2000; ). Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74, 6964–6974.[CrossRef]
    [Google Scholar]
  2. Adler, H., Messerle, M. & Koszinowski, U. H. ( 2001; ). Virus reconstituted from infectious bacterial artificial chromosome (BAC)-cloned murine gammaherpesvirus 68 acquires wild-type properties in vivo only after excision of BAC vector sequences. J Virol 75, 5692–5696.[CrossRef]
    [Google Scholar]
  3. Belz, G. T., Wilson, N. S., Kupresanin, F., Mount, A. M. & Smith, C. M. ( 2007; ). Shaping naive and memory CD8+ T cell responses in pathogen infections through antigen presentation. Adv Exp Med Biol 590, 31–42.
    [Google Scholar]
  4. Bennett, N. J., May, J. S. & Stevenson, P. G. ( 2005; ). Gamma-herpesvirus latency requires T cell evasion during episome maintenance. PLoS Biol 3, e120 [CrossRef]
    [Google Scholar]
  5. Blasdell, K., McCracken, C., Morris, A., Nash, A. A., Begon, M., Bennett, M. & Stewart, J. P. ( 2003; ). The wood mouse is a natural host for murid herpesvirus 4. J Gen Virol 84, 111–113.[CrossRef]
    [Google Scholar]
  6. Blaskovic, D., Stancekova, M., Svobodova, J. & Mistrikova, J. ( 1980; ). Isolation of five strains of herpesviruses from two species of free living small rodents. Acta Virol 24, 468
    [Google Scholar]
  7. Blaskovic, D., Stanekova, D. & Rajcani, J. ( 1984; ). Experimental pathogenesis of murine herpesvirus in newborn mice. Acta Virol 28, 225–231.
    [Google Scholar]
  8. Boname, J. M. & Stevenson, P. G. ( 2001; ). MHC class I ubiquitination by a viral PHD/LAP finger protein. Immunity 15, 627–636.[CrossRef]
    [Google Scholar]
  9. Boname, J. M., de Lima, B. D., Lehner, P. J. & Stevenson, P. G. ( 2004; ). Viral degradation of the MHC class I peptide loading complex. Immunity 20, 305–317.[CrossRef]
    [Google Scholar]
  10. Bridgeman, A., Stevenson, P. G., Simas, J. P. & Efstathiou, S. ( 2001; ). A secreted chemokine binding protein encoded by murine gammaherpesvirus-68 is necessary for the establishment of a normal latent load. J Exp Med 194, 301–312.[CrossRef]
    [Google Scholar]
  11. Chastel, C., Beaucournu, J. P., Chastel, O., Legrand, M. C. & Le Goff, F. ( 1994; ). A herpesvirus from an European shrew (Crocidura russula). Acta Virol 38, 309
    [Google Scholar]
  12. Coleman, H. M., de Lima, B., Morton, V. & Stevenson, P. G. ( 2003; ). Murine gammaherpesvirus 68 lacking thymidine kinase shows severe attenuation of lytic cycle replication in vivo but still establishes latency. J Virol 77, 2410–2417.[CrossRef]
    [Google Scholar]
  13. de Lima, B. D., May, J. S. & Stevenson, P. G. ( 2004; ). Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo. J Virol 78, 5103–5112.[CrossRef]
    [Google Scholar]
  14. de Lima, B. D., May, J. S., Marques, S., Simas, J. P. & Stevenson, P. G. ( 2005; ). Murine gammaherpesvirus 68 bcl-2 homologue contributes to latency establishment in vivo. J Gen Virol 86, 31–40.[CrossRef]
    [Google Scholar]
  15. Flano, E., Kim, I. J., Woodland, D. L. & Blackman, M. A. ( 2002; ). γ-herpesvirus latency is preferentially maintained in splenic germinal center and memory B cells. J Exp Med 196, 1363–1372.[CrossRef]
    [Google Scholar]
  16. Gangappa, S., van Dyk, L. F., Jewett, T. J., Speck, S. H. & Virgin, H. W. ( 2002; ). Identification of the in vivo role of a viral bcl-2. J Exp Med 195, 931–940.[CrossRef]
    [Google Scholar]
  17. Gaspar, M., Gill, M. B., Loesing, J. B., May, J. S. & Stevenson, P. G. ( 2008; ). Multiple functions for ORF75c in murid herpesvirus-4 infection. PLoS One 3, e2781 [CrossRef]
    [Google Scholar]
  18. Gillet, L., Adler, H. & Stevenson, P. G. ( 2007a; ). Glycosaminoglycan interactions in murine gammaherpesvirus-68 infection. PLoS One 2, e347 [CrossRef]
    [Google Scholar]
  19. Gillet, L., May, J. S. & Stevenson, P. G. ( 2007b; ). Post-exposure vaccination improves gammaherpesvirus neutralization. PLoS One 2, e899 [CrossRef]
    [Google Scholar]
  20. Gillet, L., Colaco, S. & Stevenson, P. G. ( ( 2008; ). The murid herpesvirus-4 gH/gL binds to glycosaminoglycans. PLoS ONE 3, e1669 [CrossRef]
    [Google Scholar]
  21. Hayashi, K., Hayashi, M., Jalkanen, M., Firestone, J. H., Trelstad, R. L. & Bernfield, M. ( 1987; ). Immunocytochemistry of cell surface heparan sulfate proteoglycan in mouse tissues. A light and electron microscopic study. J Histochem Cytochem 35, 1079–1088.[CrossRef]
    [Google Scholar]
  22. Hutchens, M. & Luker, G. D. ( 2007; ). Applications of bioluminescence imaging to the study of infectious diseases. Cell Microbiol 9, 2315–2322.[CrossRef]
    [Google Scholar]
  23. Kapadia, S. B., Molina, H., van Berkel, V., Speck, S. H. & Virgin, H. W. ( 1999; ). Murine gammaherpesvirus 68 encodes a functional regulator of complement activation. J Virol 73, 7658–7670.
    [Google Scholar]
  24. Kozuch, O., Reichel, M., Lesso, J., Remenová, A., Labuda, M., Lysy, J. & Mistríková, J. ( 1993; ). Further isolation of murine herpesviruses from small mammals in southwestern Slovakia. Acta Virol 37, 101–105.
    [Google Scholar]
  25. Laichalk, L. L., Hochberg, D., Babcock, G. J., Freeman, R. B. & Thorley-Lawson, D. A. ( 2002; ). The dispersal of mucosal memory B cells: evidence from persistent EBV infection. Immunity 16, 745–754.[CrossRef]
    [Google Scholar]
  26. Liu, L., Flaño, E., Usherwood, E. J., Surman, S., Blackman, M. A. & Woodland, D. L. ( 1999; ). Lytic cycle T cell epitopes are expressed in two distinct phases during MHV-68 infection. J Immunol 163, 868–874.
    [Google Scholar]
  27. Lybarger, L., Wang, X., Harris, M. R., Virgin, H. W. & Hansen, T. H. ( 2003; ). Virus subversion of the MHC class I peptide-loading complex. Immunity 18, 121–130.[CrossRef]
    [Google Scholar]
  28. Marques, S., Efstathiou, S., Smith, K. G., Haury, M. & Simas, J. P. ( 2003; ). Selective gene expression of latent murine gammaherpesvirus 68 in B lymphocytes. J Virol 77, 7308–7318.[CrossRef]
    [Google Scholar]
  29. May, J. S., Coleman, H. M., Smillie, B., Efstathiou, S. & Stevenson, P. G. ( 2004; ). Forced lytic replication impairs host colonization by a latency-deficient mutant of murine gammaherpesvirus-68. J Gen Virol 85, 137–146.[CrossRef]
    [Google Scholar]
  30. May, J. S., Coleman, H. M., Boname, J. M. & Stevenson, P. G. ( 2005a; ). The murine gammaherpesvirus-68 ORF28 encodes a non-essential virion glycoprotein. J Gen Virol 86, 919–928.[CrossRef]
    [Google Scholar]
  31. May, J. S., de Lima, B. D., Colaco, S. & Stevenson, P. G. ( 2005b; ). Intercellular gamma-herpesvirus dissemination involves co-ordinated intracellular membrane protein transport. Traffic 6, 780–793.[CrossRef]
    [Google Scholar]
  32. Mistrikova, J., Kozuch, O., Klempa, B., Kontsekova, E., Labuda, M. & Mrmusova, M. ( 2000; ). New findings on the ecology and epidemiology of murine herpes virus isolated in Slovakia. Bratisl Lek Listy 101, 157–162 (in Slovak).
    [Google Scholar]
  33. Nash, A. A. & Sunil-Chandra, N. P. ( 1994; ). Interactions of the murine gammaherpesvirus with the immune system. Curr Opin Immunol 6, 560–563.[CrossRef]
    [Google Scholar]
  34. Nash, A. A., Dutia, B. M., Stewart, J. P. & Davison, A. J. ( 2001; ). Natural history of murine γ-herpesvirus infection. Philos Trans R Soc Lond B Biol Sci 356, 569–579.[CrossRef]
    [Google Scholar]
  35. Parry, C. M., Simas, J. P., Smith, V. P., Stewart, C. A., Minson, A. C., Efstathiou, S. & Alcami, A. ( 2000; ). A broad spectrum secreted chemokine binding protein encoded by a herpesvirus. J Exp Med 191, 573–578.[CrossRef]
    [Google Scholar]
  36. Peacock, J. W. & Bost, K. L. ( 2000; ). Infection of intestinal epithelial cells and development of systemic disease following gastric instillation of murine gammaherpesvirus-68. J Gen Virol 81, 421–429.
    [Google Scholar]
  37. Persons, D. A., Mehaffey, M. G., Kaleko, M., Nienhuis, A. W. & Vanin, E. F. ( 1998; ). An improved method for generating retroviral producer clones for vectors lacking a selectable marker gene. Blood Cells Mol Dis 24, 167–182.[CrossRef]
    [Google Scholar]
  38. Raslova, H., Berebbi, M., Rajcani, J., Sarasin, A., Matis, J. & Kudelova, M. ( 2001; ). Susceptibility of mouse mammary glands to murine gammaherpesvirus 72 (MHV-72) infection: evidence of MHV-72 transmission via breast milk. Microb Pathog 31, 47–58.[CrossRef]
    [Google Scholar]
  39. Rice, J., de Lima, B., Stevenson, F. K. & Stevenson, P. G. ( 2002; ). A γ-herpesvirus immune evasion gene allows tumor cells in vivo to escape attack by cytotoxic T cells specific for a tumor epitope. Eur J Immunol 32, 3481–3487.[CrossRef]
    [Google Scholar]
  40. Rosa, G. T., Gillet, L., Smith, C. M., de Lima, B. D. & Stevenson, P. G. ( 2007; ). IgG Fc receptors provide an alternative infection route for murine gamma-herpesvirus-68. PLoS One 2, e560 [CrossRef]
    [Google Scholar]
  41. Simas, J. P., Swann, D., Bowden, R. & Efstathiou, S. ( 1999; ). Analysis of murine gammaherpesvirus-68 transcription during lytic and latent infection. J Gen Virol 80, 75–82.
    [Google Scholar]
  42. Smith, C. M., Rosa, G. T., May, J. S., Bennett, N. J., Mount, A. M., Belz, G. T. & Stevenson, P. G. ( 2006; ). CD4+ T cells specific for a model latency-associated antigen fail to control a gammaherpesvirus in vivo. Eur J Immunol 36, 3186–3197.[CrossRef]
    [Google Scholar]
  43. Smith, C. M., Gill, M. B., May, J. S. & Stevenson, P. G. ( 2007; ). Murine gammaherpesvirus-68 inhibits antigen presentation by dendritic cells. PLoS One 2, e1048 [CrossRef]
    [Google Scholar]
  44. Song, M. J., Hwang, S., Wong, W. H., Wu, T. T., Lee, S., Liao, H. I. & Sun, R. ( 2005; ). Identification of viral genes essential for replication of murine γ-herpesvirus 68 using signature-tagged mutagenesis. Proc Natl Acad Sci U S A 102, 3805–3810.[CrossRef]
    [Google Scholar]
  45. Speck, S. H. & Virgin, H. W. ( 1999; ). Host and viral genetics of chronic infection: a mouse model of gamma-herpesvirus pathogenesis. Curr Opin Microbiol 2, 403–409.[CrossRef]
    [Google Scholar]
  46. Stevenson, P. G. ( 2004; ). Immune evasion by gamma-herpesviruses. Curr Opin Immunol 16, 456–462.[CrossRef]
    [Google Scholar]
  47. Stevenson, P. G. & Doherty, P. C. ( 1998; ). Kinetic analysis of the host immune response to a murine gammaherpesvirus. J Virol 72, 943–949.
    [Google Scholar]
  48. Stevenson, P. G. & Efstathiou, S. ( 2005; ). Immune mechanisms in murine gammaherpesvirus-68 infection. Viral Immunol 18, 445–456.[CrossRef]
    [Google Scholar]
  49. Stevenson, P. G., Belz, G. T., Altman, J. D. & Doherty, P. C. ( 1999a; ). Changing patterns of dominance in the CD8+ T cell response during acute and persistent murine γ-herpesvirus infection. Eur J Immunol 29, 1059–1067.[CrossRef]
    [Google Scholar]
  50. Stevenson, P. G., Cardin, R. D., Christensen, J. P. & Doherty, P. C. ( 1999b; ). Immunological control of a murine gammaherpesvirus independent of CD8+ T cells. J Gen Virol 80, 477–483.
    [Google Scholar]
  51. Stevenson, P. G., Belz, G. T., Castrucci, M. R., Altman, J. D. & Doherty, P. C. ( 1999c; ). A γ-herpesvirus sneaks through a CD8+ T cell response primed to a lytic-phase epitope. Proc Natl Acad Sci U S A 96, 9281–9286.[CrossRef]
    [Google Scholar]
  52. Stevenson, P. G., Boname, J. M., de Lima, B. & Efstathiou, S. ( 2002a; ). A battle for survival: immune control and immune evasion in murine γ-herpesvirus-68 infection. Microbes Infect 4, 1177–1182.[CrossRef]
    [Google Scholar]
  53. Stevenson, P. G., May, J. S., Smith, X. G., Marques, S., Adler, H., Koszinowski, U. H., Simas, J. P. & Efstathiou, S. ( 2002b; ). K3-mediated evasion of CD8+ T cells aids amplification of a latent γ-herpesvirus. Nat Immunol 3, 733–740.
    [Google Scholar]
  54. Sunil-Chandra, N. P., Efstathiou, S., Arno, J. & Nash, A. A. ( 1992; ). Virological and pathological features of mice infected with murine gammaherpesvirus 68. J Gen Virol 73, 2347–2356.[CrossRef]
    [Google Scholar]
  55. Terry, L. A., Stewart, J. P., Nash, A. A. & Fazakerley, J. K. ( 2000; ). Murine gammaherpesvirus-68 infection of and persistence in the central nervous system. J Gen Virol 81, 2635–2643.
    [Google Scholar]
  56. Thorley-Lawson, D. A. ( 2001; ). Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 1, 75–82.[CrossRef]
    [Google Scholar]
  57. Tibbetts, S. A., Loh, J., Van Berkel, V., McClellan, J. S., Jacoby, M. A., Kapadia, S. B., Speck, S. H. & Virgin, H. W. ( 2003; ). Establishment and maintenance of gammaherpesvirus latency are independent of infective dose and route of infection. J Virol 77, 7696–7701.[CrossRef]
    [Google Scholar]
  58. van Berkel, V., Preiter, K., Virgin, H. W. & Speck, S. H. ( 1999; ). Identification and initial characterization of the murine gammaherpesvirus 68 gene M3, encoding an abundantly secreted protein. J Virol 73, 4524–4529.
    [Google Scholar]
  59. van Berkel, V., Barrett, J., Tiffany, H. L., Fremont, D. H., Murphy, P. M., McFadden, G., Speck, S. H. & Virgin, H. W. ( 2000; ). Identification of a gammaherpesvirus selective chemokine binding protein that inhibits chemokine action. J Virol 74, 6741–6747.[CrossRef]
    [Google Scholar]
  60. Weck, K. E., Barkon, M. L., Yoo, L. I., Speck, S. H. & Virgin, H. W. ( 1996; ). Mature B cells are required for acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68. J Virol 70, 6775–6780.
    [Google Scholar]
  61. Yao, Q. Y., Rickinson, A. B. & Epstein, M. A. ( 1985; ). A re-examination of the Epstein-Barr virus carrier state in healthy seropositive individuals. Int J Cancer 35, 35–42.[CrossRef]
    [Google Scholar]
  62. Yin, Y., Manoury, B. & Fahraeus, R. ( 2003; ). Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science 301, 1371–1374.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.006569-0
Loading
/content/journal/jgv/10.1099/vir.0.006569-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error