1887

Abstract

Papillomaviruses (PVs) are a group of small, non-enveloped DNA viruses that cause mucosal or cutaneous neoplasia in a variety of animals. Whilst most papillomas will regress spontaneously, some may persist or undergo malignant transformation. In this study, aggressive, persistent and extensive warts were observed on the hands and feet of a cynomolgus macaque (). The presence of PV in the wart biopsies was identified by immunohistochemistry and PCR amplification of PV DNA. The genomic DNA of this PV was cloned and sequenced, and the PV was designated papillomavirus type 1 (MfPV-1). Its genome was 7588 bp in length and the organization of its putative open reading frames (E1, E2, E6, E7, L1, L2 and E4) was similar to that of other PVs. MfPV-1 had a short non-coding region (NCR) of 412 bp. Molecular analysis of MfPV-1 genomic DNA classified it into the genus , to which all epidermodysplasia verruciformis (EV)-type PVs belong. Diseases caused by PVs of the genus are usually associated with natural or iatrogenic immunosuppression. The genomic characterization performed in this study showed that MfPV-1 clustered within the genus and also contained EV-type-specific motifs in its NCR. Further characterization of this virus and its host interactions may allow us to develop a non-human primate model for human betapapillomaviruses, a genus populated by human PV types causing EV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.006544-0
2009-04-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/4/987.html?itemId=/content/journal/jgv/10.1099/vir.0.006544-0&mimeType=html&fmt=ahah

References

  1. Berkhout, R. J., Bouwes Bavinck, J. N. & ter Schegget, J. ( 2000; ). Persistence of human papillomavirus DNA in benign and (pre)malignant skin lesions from renal transplant recipients. J Clin Microbiol 38, 2087–2096.
    [Google Scholar]
  2. Chang, F., Shen, Q., Zhou, J., Wang, C., Wang, D., Syrjänen, S. & Syrjänen, K. ( 1990; ). Detection of human papillomavirus DNA in cytologic specimens derived from esophageal precancer lesions and cancer. Scand J Gastroenterol 25, 383–388.
    [Google Scholar]
  3. Cowsert, L. M., Lake, P. & Jenson, A. B. ( 1987; ). Topographical and conformational epitopes of bovine papillomavirus type 1 defined by monoclonal antibodies. J Natl Cancer Inst 79, 1053–1057.
    [Google Scholar]
  4. de Villiers, E. M., Fauquet, C., Broker, T. R., Bernard, H. U. & zur Hausen, H. ( 2004; ). Classification of papillomaviruses. Virology 324, 17–27.[CrossRef]
    [Google Scholar]
  5. Edgar, R. C. ( 2004; ). muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113 [CrossRef]
    [Google Scholar]
  6. Fuchs, P. G. & Pfister, H. ( 1997; ). Molecular biology of HPV and mechanisms of keratinocyte transformation. In Human Papillomavirus Infections in Dermatovenerology, pp. 15–46. Edited by G. Gross & G. von Krogh. Boca Raton: CRC Press.
  7. Gül, U., Kilic, A., Gönül, M., Cakmak, S. K. & Bayis, S. S. ( 2007; ). Clinical aspects of epidermodysplasia verruciformis and review of the literature. Int J Dermatol 46, 1069–1072.[CrossRef]
    [Google Scholar]
  8. Hajdu, S. I. & Ali, S. Z. ( 2008; ). Discovery of human papillomavirus in carcinoma of the lung. Ann Clin Lab Sci 38, 3–5.
    [Google Scholar]
  9. Harwood, C. A., Surentheran, T., McGregor, J. M., Spink, P. J., Leigh, I. M., Breuer, J. & Proby, C. M. ( 2000; ). Human papillomavirus infection and non-melanoma skin cancer in immunosuppressed and immunocompetent individuals. J Med Virol 61, 289–297.[CrossRef]
    [Google Scholar]
  10. Hopfl, R., Bens, G., Wieland, U., Petter, A., Zelger, B., Fritsch, P. & Pfister, H. ( 1997; ). Human papillomavirus DNA in non-melanoma skin cancers of a renal transplant recipient: detection of a new sequence related to epidermodysplasia verruciformis associated types. J Invest Dermatol 108, 53–56.[CrossRef]
    [Google Scholar]
  11. Howley, P. M. & Lowy, D. R. ( 2007; ). Papillomaviruses. In Fields Virology, 5th edn, pp. 2299–2354. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  12. Jablonska, S., Dabrowski, J. & Jakubowicz, K. ( 1972; ). Epidermodysplasia verruciformis as a model in studies on the role of papovaviruses in oncogenesis. Cancer Res 32, 583–589.
    [Google Scholar]
  13. Jenson, A. B., Geyer, S., Sundberg, J. P. & Ghim, S. ( 2001; ). Human papillomavirus and skin cancer. J Investig Dermatol Symp Proc 6, 203–206.[CrossRef]
    [Google Scholar]
  14. Lim, P. S., Jenson, A. B., Cowsert, L., Nakai, Y., Lim, L. Y., Jin, X. W. & Sundberg, J. P. ( 1990; ). Distribution and specific identification of papillomavirus major capsid protein epitopes by immunocytochemistry and epitope scanning of synthetic peptides. J Infect Dis 162, 1263–1269.[CrossRef]
    [Google Scholar]
  15. Maggiorella, M. T., Sernicola, L., Crostarosa, F., Belli, R., Pavone-Cossut, M. R., Macchia, I., Farcomeni, S., Tenner-Racz, K., Racz, P. & other authors ( 2007; ). Multiprotein genetic vaccine in the SIV–Macaca animal model: a promising approach to generate sterilizing immunity to HIV infection. J Med Primatol 36, 180–194.[CrossRef]
    [Google Scholar]
  16. McBride, A. A., Byrne, J. C. & Howley, P. M. ( 1989; ). E2 polypeptides encoded by bovine papillomavirus I form dimers through the carboxyl-terminal DNA binding domain: transactivation is mediated through the conserved amino-terminal domain. Proc Natl Acad Sci U S A 86, 510–514.[CrossRef]
    [Google Scholar]
  17. Orth, G. ( 2006; ). Genetics of epidermodysplasia verruciformis: insights into host defense against papillomaviruses. Semin Immunol 18, 362–374.[CrossRef]
    [Google Scholar]
  18. Orth, G., Jablonska, S., Jarzabek-Chorzelska, M., Rzesa, G., Obalek, S., Favre, M. & Croissant, O. ( 1979; ). Characteristics of the lesions and risk of malignant conversion associated with the type of human papillomavirus involved in epidermodysplasia verruciformis. Cancer Res 39, 1074–1082.
    [Google Scholar]
  19. Pfister, H., Fuchs, P. G., Majewski, S., Jablonska, S., Pniewska, I. & Malejczyk, M. ( 2003; ). High prevalence of epidermodysplasia verruciformis-associated human papillomavirus DNA in actinic keratoses of the immunocompetent population. Arch Dermatol Res 295, 273–279.[CrossRef]
    [Google Scholar]
  20. Psyrri, A. & DiMaio, D. ( 2008; ). Human papillomavirus in cervical and head-and-neck cancer. Nat Clin Pract Oncol 5, 24–31.[CrossRef]
    [Google Scholar]
  21. Ramoz, N., Rueda, L. A., Bouadjar, B., Montoya, L. S., Orth, G. & Favre, M. ( 2002; ). Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat Genet 32, 579–581.[CrossRef]
    [Google Scholar]
  22. Rector, A., Bossart, G. D., Ghim, S. J., Sundberg, J. P., Jenson, A. B. & Van Ranst, M. ( 2004; ). Characterization of a novel close-to-root papillomavirus from a Florida manatee by using multiply primed rolling-circle amplification: Trichechus manatus latirostris papillomavirus type 1. J Virol 78, 12698–12702.[CrossRef]
    [Google Scholar]
  23. Schug, J. ( 2008; ). Using tess to predict transcription factor binding sites in DNA sequence. In Current Protocols in Bioinformatics, chapter 2, unit 2.6. New York: Wiley.
  24. Schug, J. & Overton, G. C. ( 1997; ). Modeling transcription factor binding sites with Gibbs sampling and minimum description length encoding. Proc Int Conf Intell Syst Mol Biol 5, 268–271.
    [Google Scholar]
  25. Sundberg, J. P. & Reichmann, M. E. ( 1993; ). Papillomavirus infections. In Nonhuman Primates II, pp. 1–8. Edited by T. C. Jones, U. Mohr & R. D. Hunt. Berlin: Springer.
  26. Swofford, D. L. ( 2002; ). paup*: Phylogenetic analysis using parsimony (and other methods), version 4. Sunderland, MA: Sinauer Associates.
  27. Titolo, S., Pelletier, A., Sauve, F., Brault, K., Wardrop, E., White, P. W., Amin, A., Cordingley, M. G. & Archambault, J. ( 1999; ). Role of the ATP-binding domain of the human papillomavirus type 11 E1 helicase in E2-dependent binding to the origin. J Virol 73, 5282–5293.
    [Google Scholar]
  28. Tobler, K., Favrot, C., Nespeca, G. & Ackermann, M. ( 2006; ). Detection of the prototype of a potential novel genus in the family Papillomaviridae in association with canine epidermodysplasia verruciformis. J Gen Virol 87, 3551–3557.[CrossRef]
    [Google Scholar]
  29. Van Doorslaer, K., Rector, A., Jenson, A. B., Sundberg, J. P., Van Ranst, M. & Ghim, S. J. ( 2007; ). Complete genomic characterization of a murine papillomavirus isolated from papillomatous lesions of a European harvest mouse (Micromys minutus). J Gen Virol 88, 1484–1488.[CrossRef]
    [Google Scholar]
  30. Wilgenbusch, J. C. & Swofford, D. ( 2003; ). Inferring evolutionary trees with paup*. In Current Protocols in Bioinformatics, chapter 6, unit 6.4. New York: Wiley.
  31. Wood, C. E., Chen, Z., Cline, J. M., Miller, B. E. & Burk, R. D. ( 2007; ). Characterization and experimental transmission of an oncogenic papillomavirus in female macaques. J Virol 81, 6339–6345.[CrossRef]
    [Google Scholar]
  32. Zheng, Z. M. & Baker, C. C. ( 2006; ). Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci 11, 2286–2302.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.006544-0
Loading
/content/journal/jgv/10.1099/vir.0.006544-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error