1887

Abstract

In contrast to other retroviruses, foamy viruses (FVs) generate their Pol protein precursor independently of the Gag protein from a spliced mRNA. The exact mechanism of Pol protein incorporation into the viral capsid is poorly understood. Previously, we showed that Pol encapsidation critically depends on the packaging of (pre-) genomic RNA and identified two distinct signals within the -acting sequences (CASI and CASII), Pol encapsidation sequences (PESI and PESII), which are required for Pol capsid incorporation. Here, we investigated whether the presence of PESI and PESII in an FV vector is sufficient for Pol encapsidation and whether the rather extended CASII element can be shortened without loss of functionality. Our results indicate that (i) the presence of PESI and II are not sufficient for Pol encapsidation, (ii) prototype FV vectors with a shortened CASII element retain Pol incorporation and full functionality, in particular upon transducing fibroblasts and primary human mesenchymal stem cells, (iii) the presence of the central poly purine tract significantly increased the transduction rates of FV vectors and (iv) Pol encapsidation and RNA packaging can be clearly separated. In essence, we designed a new FV vector that bears approximately 850 bp less of CAS than previously established vectors and is fully functional when analysed to transduce cell lines and primary human cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.006312-0
2009-02-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/2/481.html?itemId=/content/journal/jgv/10.1099/vir.0.006312-0&mimeType=html&fmt=ahah

References

  1. Arhel, N., Munier, S., Souque, P., Mollier, K. & Charneau, P. ( 2006a; ). Nuclear import defect of human immunodeficiency virus type 1 DNA flap mutants is not dependent on the viral strain or target cell type. J Virol 80, 10262–10269.[CrossRef]
    [Google Scholar]
  2. Arhel, N. J., Souquere-Besse, S. & Charneau, P. ( 2006b; ). Wild-type and central DNA flap defective HIV-1 lentiviral vector genomes: intracellular visualization at ultrastructural resolution levels. Retrovirology 3, 38 [CrossRef]
    [Google Scholar]
  3. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1987; ). Current Protocols in Molecular Biology. New York: John Wiley.
  4. Bodem, J., Löchelt, M., Winkler, I., Flower, R. P., Delius, H. & Flügel, R. M. ( 1996; ). Characterization of the spliced pol transcript of feline foamy virus: the splice acceptor site of the pol transcript is located in gag of foamy viruses. J Virol 70, 9024–9027.
    [Google Scholar]
  5. Dardalhon, V., Herpers, B., Noraz, N., Pflumio, F., Guetard, D., Leveau, C., Dubart-Kupperschmitt, A., Charneau, P. & Taylor, N. ( 2001; ). Lentivirus-mediated gene transfer in primary T cells is enhanced by a central DNA flap. Gene Ther 8, 190–198.[CrossRef]
    [Google Scholar]
  6. DuBridge, R. B., Tang, P., Hsia, H. C., Leong, P.-M., Miller, J. H. & Calos, M. P. ( 1987; ). Analysis of mutation in human cells by using Epstein-Barr virus shuttle system. Mol Cell Biol 7, 379–387.
    [Google Scholar]
  7. Enssle, J., Jordan, I., Mauer, B. & Rethwilm, A. ( 1996; ). Foamy virus reverse transcriptase is expressed independently from the Gag protein. Proc Natl Acad Sci U S A 93, 4137–4141.[CrossRef]
    [Google Scholar]
  8. Erlwein, O., Bieniasz, P. D. & McClure, M. O. ( 1998; ). Sequences in pol are required for transfer of human foamy virus-based vectors. J Virol 72, 5510–5516.
    [Google Scholar]
  9. Flügel, R. M. & Pfrepper, K. I. ( 2003; ). Proteolytic processing of foamy virus Gag and Pol proteins. Curr Top Microbiol Immunol 277, 63–88.
    [Google Scholar]
  10. Follenzi, A., Ailles, L. E., Bakovic, S., Geuna, M. & Naldini, L. ( 2000; ). Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25, 217–222.[CrossRef]
    [Google Scholar]
  11. Gharwan, H., Hirata, R. K., Wang, P., Richard, R. E., Wang, L., Olson, L., Allen, J., Ware, C. B. & Russell, D. W. ( 2007; ). Transduction of human embryonic stem cells by foamy virus vectors. Mol Ther 15, 1827–1833.[CrossRef]
    [Google Scholar]
  12. Heinkelein, M., Schmidt, M., Fischer, N., Moebes, A., Lindemann, D., Enssle, J. & Rethwilm, A. ( 1998; ). Characterization of a cis-acting sequence in the Pol region required to transfer human foamy virus vectors. J Virol 72, 6307–6314.
    [Google Scholar]
  13. Heinkelein, M., Thurow, J., Dressler, M., Imrich, H., Neumann-Haefelin, D., McClure, M. O. & Rethwilm, A. ( 2000; ). Complex effects of deletions in the 5′ untranslated region of primate foamy virus on viral gene expression and RNA packaging. J Virol 74, 3141–3148.[CrossRef]
    [Google Scholar]
  14. Heinkelein, M., Dressler, M., Jarmy, G., Rammling, M., Imrich, H., Thurow, J., Lindemann, D. & Rethwilm, A. ( 2002a; ). Improved primate foamy virus vectors and packaging constructs. J Virol 76, 3774–3783.[CrossRef]
    [Google Scholar]
  15. Heinkelein, M., Leurs, C., Rammling, M., Peters, K., Hanenberg, H. & Rethwilm, A. ( 2002b; ). Pregenomic RNA is required for efficient incorporation of pol polyprotein into foamy virus capsids. J Virol 76, 10069–10073.[CrossRef]
    [Google Scholar]
  16. Imrich, H., Heinkelein, M., Herchenröder, O. & Rethwilm, A. ( 2000; ). Primate foamy virus Pol proteins are imported into the nucleus. J Gen Virol 81, 2941–2947.
    [Google Scholar]
  17. Lee, E. G. & Linial, M. L. ( 2008; ). The C-terminus of foamy retrovirus Gag contains determinants for encapsidation of Pol protein into virions. J Virol 82, 10803–10810.[CrossRef]
    [Google Scholar]
  18. Leurs, C., Jansen, M., Pollok, K. E., Heinkelein, M., Schmidt, M., Wissler, M., Lindemann, D., von Kalle, C., Rethwilm, A. & other authors ( 2003; ). Comparison of three retroviral vector systems for transduction of nonobese diabetic/severe combined immunodeficiency mice repopulating human CD34+ cord blood cells. Hum Gene Ther 14, 509–519.[CrossRef]
    [Google Scholar]
  19. Limón, A., Nakajima, N., Lu, R., Ghory, H. Z. & Engelman, A. ( 2002; ). Wild-type levels of nuclear localization and human immunodeficiency virus type 1 replication in the absence of the central DNA flap. J Virol 76, 12078–12086.[CrossRef]
    [Google Scholar]
  20. Linial, M. ( 2007; ). Foamy viruses. In Fields Virology, 5th edn, pp. 2245–2262. Edited by E. D. M. Knipe & P. M. Howley. Philadelphia: Lippincot Williams & Wilkins.
  21. Linial, M. L., Fan, H., Hahn, B., Lwer, R., Neil, J., Quackenbusch, S., Rethwilm, A., Sonigo, P., Stoye, J. & Tristem, M. ( 2005; ). Retroviridae. In Virus Taxonomy, pp. 421–440. Edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Dessselberger & L. A. Ball. Oxford: Elsevier Inc.
  22. Nöth, U., Tuli, R., Osyczka, A. M., Danielson, K. G. & Tuan, R. S. ( 2002; ). In vitro engineered cartilage constructs produced by press-coating biodegradable polymer with human mesenchymal stem cells. Tissue Eng 8, 131–144.[CrossRef]
    [Google Scholar]
  23. Peters, K., Wiktorowicz, T., Heinkelein, M. & Rethwilm, A. ( 2005; ). RNA and protein requirements for incorporation of the pol protein into foamy virus particles. J Virol 79, 7005–7013.[CrossRef]
    [Google Scholar]
  24. Peters, K., Barg, N., Gärtner, K. & Rethwilm, A. ( 2008; ). Complex effects of foamy virus central purine-rich regions on viral replication. Virology 373, 51–60.[CrossRef]
    [Google Scholar]
  25. Rethwilm, A. ( 2003; ). The replication strategy of foamy viruses. Curr Top Microbiol Immunol 277, 1–26.
    [Google Scholar]
  26. Rethwilm, A. ( 2005; ). Foamy viruses. In Topley & Wilson's Microbiology and Microbial Infections – Virology, 10th edn, pp. 1304–1321. Edited by B. W. J. Mahy & V. t. Meulen. London: Hodder Arnold.
  27. Russell, R. A., Zeng, Y., Erlwein, O., Cullen, B. R. & McClure, M. O. ( 2001; ). The R region found in the human foamy virus long terminal repeat is critical for both Gag and Pol protein expression. J Virol 75, 6817–6824.[CrossRef]
    [Google Scholar]
  28. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  29. Skasko, M. & Kim, B. ( 2008; ). Compensatory role of human immunodeficiency virus central polypurine tract sequence in kinetically disrupted reverse transcription. J Virol 82, 7716–7720.[CrossRef]
    [Google Scholar]
  30. Stange, A., Mannigel, I., Peters, K., Heinkelein, M., Stanke, N., Cartellieri, M., Gottlinger, H., Rethwilm, A., Zentgraf, H. & Lindemann, D. ( 2005; ). Characterization of prototype foamy virus gag late assembly domain motifs and their role in particle egress and infectivity. J Virol 79, 5466–5476.[CrossRef]
    [Google Scholar]
  31. Trobridge, G., Josephson, N., Vassilopoulos, G., Mac, J. & Russell, D. W. ( 2002; ). Improved foamy virus vectors with minimal viral sequences. Mol Ther 6, 321–328.[CrossRef]
    [Google Scholar]
  32. Van Maele, B., De Rijck, J., De Clercq, E. & Debyser, Z. ( 2003; ). Impact of the central polypurine tract on the kinetics of human immunodeficiency virus type 1 vector transduction. J Virol 77, 4685–4694.[CrossRef]
    [Google Scholar]
  33. Wu, M., Chari, S., Yanchis, T. & Mergia, A. ( 1998; ). cis-Acting sequences required for simian foamy virus type 1 vectors. J Virol 72, 3451–3454.
    [Google Scholar]
  34. Yu, S. F., Baldwin, D. N., Gwynn, S. R., Yendapalli, S. & Linial, M. L. ( 1996; ). Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science 271, 1579–1582.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.006312-0
Loading
/content/journal/jgv/10.1099/vir.0.006312-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error