1887

Abstract

The ascovirus 1a (SfAV-1a) is a double-stranded DNA virus that attacks lepidopteran larvae, in which it produces enveloped virions with complex symmetry which have an average diameter of 130 nm and length of 400 nm. Here, we report identification of 21 SfAV-1a-encoded proteins that occur in the virion, as determined by nano-liquid chromatography/tandem mass spectrometry. These included a helicase (ORF009), nuclease (ORF075), ATPase (ORF047), serine/threonine-like protein kinase (ORF064), inhibitor of apoptosis-like protein (ORF015), thiol oxidoreductase-like protein (ORF061), CTD phosphatase (ORF109), major capsid protein (ORF041) and a highly basic protein, P64 (ORF048). The latter two were the most abundant. Apart from ascoviruses, the closest orthologues were found in iridoviruses, providing further evidence that ascoviruses evolved from invertebrate iridoviruses. These results establish a foundation for investigating how ascovirus virion proteins interact to form their complex asymmetrical structure, as well as for elucidating the mechanisms involved in SfAV-1a virion morphogenesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.005934-0
2009-02-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/2/359.html?itemId=/content/journal/jgv/10.1099/vir.0.005934-0&mimeType=html&fmt=ahah

References

  1. Asgari S., Davis J., Wood D., Wilson P., McGrath A. 2007; Sequence and organization of the Heliothis virescens ascovirus genome. J Gen Virol 88:1120–1132 [CrossRef]
    [Google Scholar]
  2. Bideshi D. K., Tan Y., Bigot Y., Federici B. A. 2005; A viral caspase contributes to modified apoptosis for virus transmission. Genes Dev 19:1416–1421 [CrossRef]
    [Google Scholar]
  3. Bideshi D. K., Demattei M. V., Rouleux-Bonnin F., Stasiak K., Tan Y., Bigot S., Bigot Y., Federici B. A. 2006; Genomic sequence of the Spodoptera frugiperda ascovirus 1a, an enveloped, double-stranded DNA insect virus that manipulates apoptosis for viral reproduction. J Virol 80:11791–11805 [CrossRef]
    [Google Scholar]
  4. Bigot Y., Rabouille A., Doury G., Sizaret P.-Y., Belbost F., Hamelin M.-H., Periquet G. 1997a; Biological and molecular features of the relationships between Diadromus pulchellus ascovirus, a parasitoid hymenopteran wasp ( Diadromus pulchellus ) and its lepidopteran host, Acrolepiopsis assectella . J Gen Virol 78:1149–1163
    [Google Scholar]
  5. Bigot Y., Rabouille A., Sizaret P. Y., Hamelin M. H., Periquet G. 1997b; Particle and genomic characteristics of a new member of the Ascoviridae : Diadromus pulchellus ascovirus. J Gen Virol 78:1139–1147
    [Google Scholar]
  6. Bigot Y., Asgari S., Bideshi D. K., Cheng X. W., Federici B. A., Renault S. 2008) http://gicc.univ-tours.fr/recherche/projets/pics.php?connect=0&lang=en
  7. Braunagel S. C., Russell W. K., Rosas-Acosta G., Russell D. H., Summers M. D. 2003; Determination of the protein composition of the occlusion-derived virus of Autographa californica nucleopolyhedrovirus. Proc Natl Acad Sci U S A 100:9797–9802 [CrossRef]
    [Google Scholar]
  8. Cheng X. W., Carner G. R., Arif B. M. 2000; A new ascovirus for Spodoptera exigua and its relatedness to the isolate from Spodoptera frugiperda . J Gen Virol 81:3083–3092
    [Google Scholar]
  9. Cui L., Cheng X., Li L., Li J. 2007; Identification of Trichoplusia ni ascovirus 2c virion structural proteins. J Gen Virol 88:2194–2197 [CrossRef]
    [Google Scholar]
  10. Deng F., Wang R., Fang M., Jiang Y., Xu X., Wang H., Chen X., Arif B. M., Guo L. other authors 2007; Proteomics analysis of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus identified two new occlusion derived virus-associated proteins, HA44 and HA100. J Virol 81:9377–9385 [CrossRef]
    [Google Scholar]
  11. Federici B. A. 1983; Enveloped double stranded DNA insect virus with novel structure and cytopathology. Proc Natl Acad Sci U S A 80:7664–7668 [CrossRef]
    [Google Scholar]
  12. Federici B. A., Govindarajan R. 1990; Comparative histopathology of three ascovirus isolates in larval noctuids. J Invertebr Pathol 56:300–311 [CrossRef]
    [Google Scholar]
  13. Federici B. A., Vlak J. M., Hamm J. J. 1990; Comparative study of virion structure, protein composition and genomic DNA of three ascovirus isolates. J Gen Virol 71:1661–1668 [CrossRef]
    [Google Scholar]
  14. Federici B. A., Bigot Y., Granados R. R., Hamm J. J., Miller L. K., Newton I., Stasiak K., Vlak J. M. 2005; Family Ascoviridae . In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses pp 269–274Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. San Diego: Elsevier Academic Press;
    [Google Scholar]
  15. Huang E.-S., Johnson R. A. 2000; Human cytomegalovirus – no longer just a DNA virus. Nat Med 6:863–864 [CrossRef]
    [Google Scholar]
  16. Iyer L. M., Balaji S., Koonin E. V., Aravind L. 2006; Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res 117:156–184 [CrossRef]
    [Google Scholar]
  17. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  18. Meinhart A., Kamenski T., Hoeppner S., Baumli S., Cramer P. 2005; A structural perspective of CTD function. Genes Dev 19:1401–1415 [CrossRef]
    [Google Scholar]
  19. Mueller D. R., Voshol H., Waldt A., Wiedmann B., Van Oostrum J. 2007; LC-MALDI MS and MS/MS – an efficient tool in proteome analysis. Subcell Biochem 43:355–380
    [Google Scholar]
  20. Pan S., Gu S., Bradbury E. M., Chen X. 2003; Single peptide-based protein identification in human proteome through MALDI-TOF MS coupled with amino acids coded mass tagging. Anal Chem 75:1316–1324 [CrossRef]
    [Google Scholar]
  21. Resch W., Hixson K. K., Moore R. J., Lipton M. S., Moss B. 2007; Protein composition of the vaccinia virus mature virion. Virology 358:233–247 [CrossRef]
    [Google Scholar]
  22. Senkevich T. G., White C. L., Koonin E. V., Moss B. 2002a; Complete pathway for protein disulfide bond formation encoded by poxvirus. Proc Natl Acad Sci U S A 99:6667–6672 [CrossRef]
    [Google Scholar]
  23. Senkevich T. G., White C. L., Weisberg A., Granek J. A., Wolffe E. J., Koonin E. V., Moss B. 2002b; Expression of the vaccinia virus A2.5L redox protein is required for virion morphogenesis. Virology 300:296–303 [CrossRef]
    [Google Scholar]
  24. Stasiak K., Renault S., Demattei M. V., Bigot Y., Federici B. A. 2003; Evidence for the evolution of ascoviruses from iridoviruses. J Gen Virol 84:2999–3009 [CrossRef]
    [Google Scholar]
  25. Wang L., Xue J., Seaborn C. P., Arif B. M., Cheng X.-W. 2006; Sequence and organization of the Trichoplusia ni ascovirus 2c ( Ascoviridae ) genome. Virology 354:167–177 [CrossRef]
    [Google Scholar]
  26. White C. L., Senkevich T. G., Moss B. 2002; Vaccinia virus G4L glutaredoxin is an essential intermediate of a cytoplasmic disulfide bond pathway required for virion assembly. J Virol 76:467–472 [CrossRef]
    [Google Scholar]
  27. Wilson M. E., Mainprize T. H., Friesen P. D., Miller L. K. 1987; Location, transcription, and sequence of a baculovirus gene encoding a small arginine-rich polypeptide. J Virol 61:661–666
    [Google Scholar]
  28. Witze E. S., Old W. M., Resing K. A., Ahn N. G. 2007; Mapping protein post-translation modification with mass spectrometry. Nat Methods 4:798–806 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.005934-0
Loading
/content/journal/jgv/10.1099/vir.0.005934-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error