1887

Abstract

Infections with dengue virus (DENV) are a significant public health concern in tropical and subtropical regions. However, little detail is known about how DENV interacts with the host-cell machinery to facilitate its translation and replication. In DENV-infected HepG2 cells, an increase in the level of LC3-II (microtubule-associated protein 1 light chain 3 form II), the autophagosomal membrane-bound form of LC3, was observed, and LC3 was found to co-localize with dsRNA and DENV NS1 protein, as well as ribosomal protein L28, indicating the presence of at least some of the DENV translation/replication machinery on autophagic vacuoles. Inhibition of fusion of autophagic vacuoles with lysosomes resulted in an increase in both intracellular and extracellular virus, and co-localization observed between mannose-6-phosphate receptor (MPR) and dsRNA and between MPR and LC3 identified the autophagic vacuoles as amphisomes. Amphisomes are formed as a result of fusion between endosomal and autophagic vacuoles, and as such provide a direct link between virus entry and subsequent replication and translation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.005355-0
2009-02-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/2/448.html?itemId=/content/journal/jgv/10.1099/vir.0.005355-0&mimeType=html&fmt=ahah

References

  1. Abramoff, M. D., Magelhaes, P. J. & Ram, S. J. ( 2004; ). Image processing with ImageJ. Biophotonics International 11, 36–42.
    [Google Scholar]
  2. Allison, S. L., Schalich, J., Stiasny, K., Mandl, C. W., Kunz, C. & Heinz, F. X. ( 1995; ). Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J Virol 69, 695–700.
    [Google Scholar]
  3. Bampton, E. T., Goemans, C. G., Niranjan, D., Mizushima, N. & Tolkovsky, A. M. ( 2005; ). The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy 1, 23–36.[CrossRef]
    [Google Scholar]
  4. Boulton, R. W. & Westaway, E. G. ( 1976; ). Replication of the flavivirus Kunjin: proteins, glycoproteins, and maturation associated with cell membranes. Virology 69, 416–430.[CrossRef]
    [Google Scholar]
  5. Cahour, A., Falgout, B. & Lai, C. J. ( 1992; ). Cleavage of the dengue virus polyprotein at the NS3/NS4A and NS4B/NS5 junctions is mediated by viral protease NS2B–NS3, whereas NS4A/NS4B may be processed by a cellular protease. J Virol 66, 1535–1542.
    [Google Scholar]
  6. Chang, G. J. ( 1997; ). Molecular biology of dengue viruses. In Dengue and Dengue Hemorrhagic Fever, pp. 175–198. Edited by D. J. Gubler & G. Kuno. Wallingford: CAB International.
  7. Clyde, K., Kyle, J. L. & Harris, E. ( 2006; ). Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol 80, 11418–11431.[CrossRef]
    [Google Scholar]
  8. Dunn, W. A., Jr ( 1990a; ). Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol 110, 1923–1933.[CrossRef]
    [Google Scholar]
  9. Dunn, W. A., Jr ( 1990b; ). Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J Cell Biol 110, 1935–1945.[CrossRef]
    [Google Scholar]
  10. French, A. P., Mills, S., Swarup, R., Bennett, M. J. & Pridmore, T. P. ( 2008; ). Colocalization of fluorescent markers in confocal microscope images of plant cells. Nat Protoc 3, 619–628.[CrossRef]
    [Google Scholar]
  11. Gordon, P. B. & Seglen, P. O. ( 1988; ). Prelysosomal convergence of autophagic and endocytic pathways. Biochem Biophys Res Commun 151, 40–47.[CrossRef]
    [Google Scholar]
  12. Gordon, P. B., Hoyvik, H. & Seglen, P. O. ( 1992; ). Prelysosomal and lysosomal connections between autophagy and endocytosis. Biochem J 283, 361–369.
    [Google Scholar]
  13. Guzman, M. G. & Kouri, G. ( 2002; ). Dengue: an update. Lancet Infect Dis 2, 33–42.[CrossRef]
    [Google Scholar]
  14. Hanada, T., Noda, N. N., Satomi, Y., Ichimura, Y., Fujioka, Y., Takao, T., Inagaki, F. & Ohsumi, Y. ( 2007; ). The Atg12–Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282, 37298–37302.[CrossRef]
    [Google Scholar]
  15. Heinz, F. X., Stiasny, K. & Allison, S. L. ( 2004; ). The entry machinery of flaviviruses. Arch Virol Suppl 18, 133–137.
    [Google Scholar]
  16. Jackson, W. T., Giddings, T. H., Jr, Taylor, M. P., Mulinyawe, S., Rabinovitch, M., Kopito, R. R. & Kirkegaard, K. ( 2005; ). Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 3, e156 [CrossRef]
    [Google Scholar]
  17. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y. & Yoshimori, T. ( 2000; ). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19, 5720–5728.[CrossRef]
    [Google Scholar]
  18. Kihara, A., Kabeya, Y., Ohsumi, Y. & Yoshimori, T. ( 2001; ). Beclin–phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2, 330–335.[CrossRef]
    [Google Scholar]
  19. Kim, J., Huang, W. P., Stromhaug, P. E. & Klionsky, D. J. ( 2002; ). Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J Biol Chem 277, 763–773.[CrossRef]
    [Google Scholar]
  20. Kimura, S., Noda, T. & Yoshimori, T. ( 2007; ). Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452–460.[CrossRef]
    [Google Scholar]
  21. Krishnan, M. N., Sukumaran, B., Pal, U., Agaisse, H., Murray, J. L., Hodge, T. W. & Fikrig, E. ( 2007; ). Rab 5 is required for the cellular entry of dengue and West Nile viruses. J Virol 81, 4881–4885.[CrossRef]
    [Google Scholar]
  22. Lee, H. K. & Iwasaki, A. ( 2008; ). Autophagy and antiviral immunity. Curr Opin Immunol 20, 23–29.[CrossRef]
    [Google Scholar]
  23. Lee, Y. R., Lei, H. Y., Liu, M. T., Wang, J. R., Chen, S. H., Jiang-Shieh, Y. F., Lin, Y. S., Yeh, T. M., Liu, C. C. & Liu, H. S. ( 2008; ). Autophagic machinery activated by dengue virus enhances virus replication. Virology 374, 240–248.[CrossRef]
    [Google Scholar]
  24. Lerena, C., Calligaris, S. D. & Colombo, M. I. ( 2008; ). Autophagy: for better or for worse, in good times or in bad times. Curr Mol Med 8, 92–101.[CrossRef]
    [Google Scholar]
  25. Levine, B. & Klionsky, D. J. ( 2004; ). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6, 463–477.[CrossRef]
    [Google Scholar]
  26. Mackenzie, J. M., Jones, M. K. & Young, P. R. ( 1996; ). Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology 220, 232–240.[CrossRef]
    [Google Scholar]
  27. Malavige, G. N., Fernando, S., Fernando, D. J. & Seneviratne, S. L. ( 2004; ). Dengue viral infections. Postgrad Med J 80, 588–601.[CrossRef]
    [Google Scholar]
  28. Meijer, A. J. & Codogno, P. ( 2006; ). Signalling and autophagy regulation in health, aging and disease. Mol Aspects Med 27, 411–425.[CrossRef]
    [Google Scholar]
  29. Miller, S. & Krijnse-Locker, J. ( 2008; ). Modification of intracellular membrane structures for virus replication. Nat Rev Microbiol 6, 363–374.[CrossRef]
    [Google Scholar]
  30. Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M. D., Klionsky, D. J., Ohsumi, M. & Ohsumi, Y. ( 1998; ). A protein conjugation system essential for autophagy. Nature 395, 395–398.[CrossRef]
    [Google Scholar]
  31. Mizushima, N., Yoshimori, T. & Ohsumi, Y. ( 2002; ). Mouse Apg10 as an Apg12-conjugating enzyme: analysis by the conjugation-mediated yeast two-hybrid method. FEBS Lett 532, 450–454.[CrossRef]
    [Google Scholar]
  32. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. ( 2008; ). Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075.[CrossRef]
    [Google Scholar]
  33. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. ( 2004; ). Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319.[CrossRef]
    [Google Scholar]
  34. Mukhopadhyay, S., Kuhn, R. J. & Rossmann, M. G. ( 2005; ). A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3, 13–22.[CrossRef]
    [Google Scholar]
  35. Noda, T. & Ohsumi, Y. ( 1998; ). Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273, 3963–3966.[CrossRef]
    [Google Scholar]
  36. Ohsumi, Y. ( 2001; ). Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2, 211–216.[CrossRef]
    [Google Scholar]
  37. Pedersen, K. W., van der Meer, Y., Roos, N. & Snijder, E. J. ( 1999; ). Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex. J Virol 73, 2016–2026.
    [Google Scholar]
  38. Puttikhunt, C., Kasinrerk, W., Srisa-ad, S., Duangchinda, T., Silakate, W., Moonsom, S., Sittisombut, N. & Malasit, P. ( 2003; ). Production of anti-dengue NS1 monoclonal antibodies by DNA immunization. J Virol Methods 109, 55–61.[CrossRef]
    [Google Scholar]
  39. Salonen, A., Ahola, T. & Kaariainen, L. ( 2005; ). Viral RNA replication in association with cellular membranes. Curr Top Microbiol Immunol 285, 139–173.
    [Google Scholar]
  40. Seglen, P. O. & Gordon, P. B. ( 1982; ). 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A 79, 1889–1892.[CrossRef]
    [Google Scholar]
  41. Sithisarn, P., Suksanpaisan, L., Thepparit, C. & Smith, D. R. ( 2003; ). Behavior of the dengue virus in solution. J Med Virol 71, 532–539.[CrossRef]
    [Google Scholar]
  42. Thepparit, C. & Smith, D. R. ( 2004; ). Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol 78, 12647–12656.[CrossRef]
    [Google Scholar]
  43. van der Schaar, H. M., Rust, M. J., Waarts, B. L., van der Ende-Metselaar, H., Kuhn, R. J., Wilschut, J., Zhuang, X. & Smit, J. M. ( 2007; ). Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. J Virol 81, 12019–12028.[CrossRef]
    [Google Scholar]
  44. Weber, F., Wagner, V., Rasmussen, S. B., Hartmann, R. & Paludan, S. R. ( 2006; ). Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 80, 5059–5064.[CrossRef]
    [Google Scholar]
  45. Xie, Z. & Klionsky, D. J. ( 2007; ). Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9, 1102–1109.[CrossRef]
    [Google Scholar]
  46. Yoshii, K., Konno, A., Goto, A., Nio, J., Obara, M., Ueki, T., Hayasaka, D., Mizutani, T., Kariwa, H. & Takashima, I. ( 2004; ). Single point mutation in tick-borne encephalitis virus prM protein induces a reduction of virus particle secretion. J Gen Virol 85, 3049–3058.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.005355-0
Loading
/content/journal/jgv/10.1099/vir.0.005355-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error