1887

Abstract

The satellite RNA of bamboo mosaic virus (satBaMV) has a single open reading frame encoding a non-structural protein, P20, which facilitates long-distance movement of satBaMV in BaMV and satBaMV co-infected plants. Immunohistochemistry and immunoelectron microscopy revealed that the P20 protein accumulated in the cytoplasm and nuclei in co-infected cells. P20 and the helper virus coat protein (CP) were highly similar in their subcellular localization, except that aggregates of BaMV virions were not labelled with anti-P20 serum. The BaMV CP protein was fairly abundant in mesophyll cells, whilst P20 was more frequently detected in mesophyll cells and vascular tissues. The expression kinetics of the P20 protein was similar to but slightly earlier than that of CP in co-infected protoplasts and leaves. However, satBaMV-encoded protein levels declined rapidly in the late phase of co-infection. During co-infection, in addition to the intact P20, a low-molecular-mass polypeptide of 16 kDa was identified as a P20 C-terminally truncated product; the possible method of generation of the truncated protein is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.004994-0
2009-02-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/2/507.html?itemId=/content/journal/jgv/10.1099/vir.0.004994-0&mimeType=html&fmt=ahah

References

  1. Bradford M. M. 1976; A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  2. Carvalho M. F., Lazarowitz S. G. 2004; Interaction of the movement protein NSP and the Arabidopsis acetyltransferase AtNSI is necessary for cabbage leaf curl geminivirus infection and pathogenicity. J Virol 78:11161–11171 [CrossRef]
    [Google Scholar]
  3. Chang B. Y., Lin N. S., Loiu D. Y., Chen J. P., Liou G. G., Hsu Y. H. 1997; Subcellular localization of the 28 kDa protein of the triple-gene-block of bamboo mosaic potexvirus. J Gen Virol 78:1175–1179
    [Google Scholar]
  4. Ding B., Kwon M. O., Hammond R., Owens R. 1997; Cell-to-cell movement of potato spindle tuber viroid. Plant J 12:931–936 [CrossRef]
    [Google Scholar]
  5. Dunigan D. D., Dietzgen R. G., Schoelz J. E., Zaitlin M. 1988; Tobacco mosaic virus particles contain ubiquitinated coat protein subunits. Virology 165:310–312 [CrossRef]
    [Google Scholar]
  6. Rodio M. E., Delgado S., Flores R., Serio D. F. 2006; Variants of Peach latent mosaic viroid inducing peach calico: uneven distribution in infected plants and requirements of the insertion containing the pathogenicity determinant. J Gen Virol 87:231–240 [CrossRef]
    [Google Scholar]
  7. Fritsch C., Mayo M. A., Murant A. F. 1978; Translation of the satellite RNA of tomato black ring virus in vitro and in tobacco protoplasts. J Gen Virol 40:587–593 [CrossRef]
    [Google Scholar]
  8. Fritsch C., Mayo M. A., Murant A. F. 1980; Translation products of genome and satellite RNAs of tomato black ring virus. J Gen Virol 46:381–389 [CrossRef]
    [Google Scholar]
  9. Fritsch C., Mayo M., Hemmer O. 1993; Properties of the satellite RNA of nepoviruses. Biochimie 75:561 [CrossRef]
    [Google Scholar]
  10. Galfre G., Milstein C. 1981; Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol 73:43–46
    [Google Scholar]
  11. Garcia-Arenal F., Palukaitis P. 1999; Structure and functional relationships of satellite RNAs of cucumber mosaic virus. Curr Top Microbiol Immunol 239:37–63
    [Google Scholar]
  12. Greif C., Hemmer O., Demangeat G., Fritsch C. 1990; In vitro synthesis of biologically active transcripts of tomato black ring virus satellite RNA. J Gen Virol 71:907–915 [CrossRef]
    [Google Scholar]
  13. Hans F., Fuchs M., Pinck L. 1992; Replication of grapevine fanleaf virus satellite RNA transcripts in Chenopodium quinoa protoplasts. J Gen Virol 73:2517–2523 [CrossRef]
    [Google Scholar]
  14. Hans F., Pinck M., Pinck L. 1993; Location of the replication determinants of the satellite RNA associated with grapevine fanleaf nepovirus (strain F13. Biochimie 75:597–603 [CrossRef]
    [Google Scholar]
  15. Hemmer O., Oncino C., Fritsch C. 1993; Efficient replication of the in vitro transcripts from cloned cDNA of tomato black ring virus satellite RNA requires the 48K RNA-encoded protein. Virology 194:800–806 [CrossRef]
    [Google Scholar]
  16. Héricourt F., Blanc S., Redeker V., Jupin I. 2000; Evidence for phosphorylation and ubiquitinylation of the turnip yellow mosaic virus RNA-dependent RNA polymerase domain expressed in a baculovirus-insect cell system. Biochem J 349:417–425 [CrossRef]
    [Google Scholar]
  17. Hsu Y. H., Annamalai P., Lin C. S., Chen Y. Y., Chang W. C., Lin N. S. 2000; A sensitive method for detecting bamboo mosaic virus (BaMV) and establishment of BaMV-free meristem tip cultures. Plant Pathol 49:101–107 [CrossRef]
    [Google Scholar]
  18. Hsu H. T., Hsu Y. H., Bil I. P., Lin N. S., Chang B. Y. 2004; Biological functions of the cytoplasmic TGBp1 inclusions of bamboo mosaic potexvirus. Arch Virol 149:1027–1035 [CrossRef]
    [Google Scholar]
  19. Huang L. C., Huang B.-L., Chen W. L. 1990; Tissue culture investigations of bamboo. V. Recovery of callus from protoplasts of suspension-cultured Bambusa cells. Bot Bull Acad Sin 31:29–34
    [Google Scholar]
  20. Hughes R. K., Perbal M. C., Maule A. J., Hull R. 1995; Evidence for proteolytic processing of tobacco mosaic virus movement protein in Arabidopsis thaliana . Mol Plant Microbe Interact 8:658–665 [CrossRef]
    [Google Scholar]
  21. Isogai M., Yoshikawa N. 2005; Mapping the RNA-binding domain on the Apple chlorotic leaf spot virus movement protein. J Gen Virol 86:225–229 [CrossRef]
    [Google Scholar]
  22. Jackson D. 1992; In situ hybridization in plants. In Molecular Plant Pathology: a Practical Approach pp 163–174Edited by Gurr S. J., McPherson M., Bowles D. J. Oxford: Oxford University Press;
    [Google Scholar]
  23. Karsies A., Horn T., Leclerc D. 2001; Degradation signals within both terminal domains of the cauliflower mosaic virus capsid protein precursor. Plant J 27:335–343 [CrossRef]
    [Google Scholar]
  24. Kaufmann A., Koenig R., Lesemann D. E. 1992; Tissue print-immunoblotting reveals an uneven distribution of beet necrotic yellow vein and beet soil-borne viruses in sugarbeets. Arch Virol 126:329–335 [CrossRef]
    [Google Scholar]
  25. Kozak M. 1984; Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res 12:857–872 [CrossRef]
    [Google Scholar]
  26. Kreiah S., Cooper J. I., Strunk G. 1993; The nucleotide sequence of a satellite RNA associated with strawberry latent ringspot virus. J Gen Virol 74:1163–1165 [CrossRef]
    [Google Scholar]
  27. Latvala-Kilby S., Lemmetty A., Lehto K. 2000; Molecular characterization of a satellite RNA associated with blackcurrant reversion nepovirus. Arch Virol 145:51–61 [CrossRef]
    [Google Scholar]
  28. Lin N. S., Chen C. C. 1991; Association of bamboo mosaic virus (BaMV) and BaMV-specific electron-dense crystalline bodies with chloroplasts. Phytopathology 81:1551–1555 [CrossRef]
    [Google Scholar]
  29. Lin N. S., Hsu Y. H. 1994; A satellite RNA associated with bamboo mosaic potexvirus. Virology 202:707–714 [CrossRef]
    [Google Scholar]
  30. Lin N. S., Langenberg W. G. 1983; Immunohistochemical localization of barley stripe mosaic virions in infected wheat cells. J Ultrastruct Res 84:16–23 [CrossRef]
    [Google Scholar]
  31. Lin N. S., Langenberg W. G. 1984; Distribution of barley stripe mosaic virus protein in infected wheat root and shoot tips. J Gen Virol 65:2217–2224 [CrossRef]
    [Google Scholar]
  32. Lin N. S., Huang T. Z., Hsu Y. H. 1992; Infection of barley protoplasts with bamboo mosaic virus RNA. Bot Bull Acad Sin 33:271–275
    [Google Scholar]
  33. Lin N. S., Chai Y. J., Huang T. Y., Chang T. Y., Hsu Y. H. 1993; Incidence of bamboo mosaic potexvirus in Taiwan. Plant Dis 77:448–450 [CrossRef]
    [Google Scholar]
  34. Lin N. S., Lin B. Y., Lo N. W., Hu C. C., Chow T. Y., Hsu Y. H. 1994; Nucleotide sequence of the genomic RNA of bamboo mosaic potexvirus. J Gen Virol 75:2513–2518 [CrossRef]
    [Google Scholar]
  35. Lin N. S., Lee Y. S., Lin B. Y., Lee C. W., Hsu Y. H. 1996; The open reading frame of bamboo mosaic potexvirus satellite RNA is not essential for its replication and can be replaced with a bacterial gene. Proc Natl Acad Sci U S A 93:3138–3142 [CrossRef]
    [Google Scholar]
  36. Lin M. K., Chang B. Y., Liao J. T., Lin N. S., Hsu Y. H. 2004; Arg-16 and Arg-21 in the N-terminal region of the triple-gene-block protein 1 of Bamboo mosaic virus are essential for virus movement. J Gen Virol 85:251–259 [CrossRef]
    [Google Scholar]
  37. Lin M. K., Hu C. C., Lin N. S., Chang B. Y., Hsu Y. H. 2006; Movement of potexviruses requires species-specific interactions among the cognate triple gene block proteins, as revealed by a trans -complementation assay based on the bamboo mosaic virus satellite RNA-mediated expression system. J Gen Virol 87:1357–1367 [CrossRef]
    [Google Scholar]
  38. Liu Y. Y., Cooper J. I. 1993; The multiplication in plants of arabis mosaic virus satellite RNA requires the encoded protein. J Gen Virol 74:1471–1474 [CrossRef]
    [Google Scholar]
  39. Liu J. S., Lin N. S. 1995; Satellite RNA associated with bamboo mosaic potexvirus shares similarity with satellites associated with sobemoviruses. Arch Virol 140:1511–1514 [CrossRef]
    [Google Scholar]
  40. Liu Y. Y., Hellen C. U., Cooper J. I., Bertioli D. J., Coates D., Bauer G. 1990; The nucleotide sequence of a satellite RNA associated with arabis mosaic nepovirus. J Gen Virol 71:1259–1263 [CrossRef]
    [Google Scholar]
  41. Liu J. S., Hsu Y. H., Huang T. Y., Lin N. S. 1997; Molecular evolution and phylogeny of satellite RNA associated with bamboo mosaic potexvirus. J Mol Evol 44:207–213 [CrossRef]
    [Google Scholar]
  42. Lommel S. A., McCain A. H., Morris T. J. 1982; Evaluation of indirect enzyme-linked immunosorbent assay for the detection of plant viruses. Phytopathology 72:1018–1022 [CrossRef]
    [Google Scholar]
  43. Lutcke H. A., Chow K. C., Mickel F. S., Moss K. A., Keren H. F., Scheele G. A. 1987; Selection of AUG initiation codons differs in plants and animals. EMBO J 6:43–48
    [Google Scholar]
  44. Maydanovych O., Beal P. A. 2006; Breaking the central dogma by RNA editing. Chem Rev 106:3397–3411 [CrossRef]
    [Google Scholar]
  45. Mayo M. A., Taliansky M. E., Jackson A. O. 1999; Large satellite RNA: molecular parasitism or molecular symbiosis. Curr Top Microbiol Immunol 239:65–80
    [Google Scholar]
  46. Moser O., Fuchs M., Pinck L., Garaud C. S. 1992; Immunodetection of grapevine fanleaf virus satellite RNA-encoded protein in infected Chenopodium quinoa . J Gen Virol 73:3033–3038 [CrossRef]
    [Google Scholar]
  47. Mulder L. C., Muesing M. A. 2000; Degradation of HIV-1 integrase by the N-end rule pathway. J Biol Chem 275:29749–29753 [CrossRef]
    [Google Scholar]
  48. Omarov R. T., Qi D., Scholthof K. B. G. 2005; The capsid protein of satellite Panicum mosaic virus contributes to systemic invasion and interacts with its helper virus. J Virol 79:9756–9764 [CrossRef]
    [Google Scholar]
  49. Palani P. V., Kasiviswanathan V., Chen J. C.-F., Chen W., Hsu Y. H., Lin N. S. 2006; The arginine-rich motif of Bamboo mosaic virus satellite RNA-encoded P20 mediates self-interaction, intracellular targeting, and cell-to-cell movement. Mol Plant Microbe Interact 19:758–767 [CrossRef]
    [Google Scholar]
  50. Pinck L., Fuchs M., Pinck M., Ravelonandro M., Walter B. 1988; A satellite RNA in grapevine fanleaf virus strain F13. J Gen Virol 69:233–239 [CrossRef]
    [Google Scholar]
  51. Qiu W., Scholthof K.-B. G. 2000; In vitro and in vivo generated defective RNAs of satellite panicum mosaic virus define cis -acting RNA elements required for replication and movement. J Virol 74:2247–2254 [CrossRef]
    [Google Scholar]
  52. Qiu W., Scholthof K.-B. G. 2001; Genetic identification of multiple biological roles associated with the capsid protein of satellite panicum mosaic virus. Mol Plant Microbe Interact 14:21–30 [CrossRef]
    [Google Scholar]
  53. Qiu W., Scholthof K.-B. G. 2004; Satellite panicum mosaic virus capsid elicits symptoms on a nonhost plant and interferes with a suppressor of virus-induced gene silencing. Mol Plant Microbe Interact 17:263–271 [CrossRef]
    [Google Scholar]
  54. Reichel C., Beachy R. N. 2000; Degradation of tobacco mosaic virus movement protein by the 26S proteasome. J Virol 74:3330–3337 [CrossRef]
    [Google Scholar]
  55. Roossinck M. J., Sleat D., Palukaitis P. 1992; Satellite RNAs of plant viruses: structures and biological effects. Microbiol Rev 56:265–279
    [Google Scholar]
  56. Scholthof K.-B. G. 1999; A synergism induced by satellite panicum mosaic virus. Mol Plant Microbe Interact 12:163–166 [CrossRef]
    [Google Scholar]
  57. Simon A. E., Roossinck M. J., Havelda Z. 2004; Plant virus satellite and defective interfering RNAs: new paradigms for a new century. Annu Rev Phytopathol 42:415–437 [CrossRef]
    [Google Scholar]
  58. Tsai M. S., Hsu Y. H., Lin N. S. 1999; Bamboo mosaic potexvirus satellite RNA (satBaMV RNA)-encoded P20 protein preferentially binds to satBaMV RNA. J Virol 73:3032–3039
    [Google Scholar]
  59. Verwoerd T. C., Dekker B. M., Hoekema A. 1989; A small scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res 17:2362 [CrossRef]
    [Google Scholar]
  60. Vieira R. C., Gomes D. M. S., Sarahyba L. S., Arruda R. C. O. 2002; Leaf anatomy of three herbaceous bamboo species. Braz J Biol 62:907–922 [CrossRef]
    [Google Scholar]
  61. Vierstra R. D. 2003; The ubiquitin/26S proteosome pathway, the complex last chapter in the life of many proteins. Trends Plant Sci 8:135–142 [CrossRef]
    [Google Scholar]
  62. Wu H. N., Wang Y. J., Hung C. F., Lee H. J., Lai M. M. 1992; Sequence and structure of the catalytic RNA of hepatitis delta virus genomic RNA. J Mol Biol 223:233–245 [CrossRef]
    [Google Scholar]
  63. Yang C. C., Liu J. S., Lin C. P., Lin N. S. 1997; Nucleotide sequence and phylogenetic analysis of a bamboo mosaic potexvirus isolate from common bamboo ( Bambusa vulgaris McClure). Bot Bull Acad Sin 38:77–84
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.004994-0
Loading
/content/journal/jgv/10.1099/vir.0.004994-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error