Using ICR and SCID mice as animal models for smallpox to assess antiviral drug efficacy Free

Abstract

The possibility of using immunocompetent ICR mice and immunodeficient SCID mice as model animals for smallpox to assess antiviral drug efficacy was investigated. Clinical signs of the disease did not appear following intranasal (i.n.) challenge of mice with strain Ind-3a of variola virus (VARV), even when using the highest possible dose of the virus (5.2 log p.f.u.). The 50 % infective doses (ID) of VARV, estimated by the virus presence or absence in the lungs 3 and 4 days post-infection, were 2.7 ± 0.4 log p.f.u. for ICR mice and 3.5 ± 0.7 log p.f.u. for SCID mice. After i.n. challenge of ICR and SCID mice with VARV 30 and 50 ID, respectively, steady reproduction of the virus occurred only in the respiratory tract (lungs and nose). Pathological inflammatory destructive changes were revealed in the respiratory tract and the primary target cells for VARV (macrophages and epithelial cells) in mice, similar to those in humans and cynomolgus macaques. The use of mice to assess antiviral efficacies of NIOCH-14 and ST-246 demonstrated the compliance of results with those described in scientific literature, which opens up the prospect of their use as an animal model for smallpox to develop anti-smallpox drugs intended for humans.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000216
2015-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/9/2832.html?itemId=/content/journal/jgv/10.1099/vir.0.000216&mimeType=html&fmt=ahah

References

  1. Americo J.L., Moss B., Earl P.L. 2010; Identification of wild-derived inbred mouse strains highly susceptible to monkeypox virus infection for use as small animal models. J Virol 84:8172–8180 [View Article][PubMed]
    [Google Scholar]
  2. Belizário J.E. 2009; Immunodeficient mouse models: an overview. Open Immunol J 2:79–85 [View Article]
    [Google Scholar]
  3. Bras G. 1952; The morbid anatomy of smallpox. Doc Med Geogr Trop 4:303–351[PubMed]
    [Google Scholar]
  4. Cann J.A., Jahrling P.B., Hensley L.E., Wahl-Jensen V. 2013; Comparative pathology of smallpox and monkeypox in man and macaques. J Comp Pathol 148:6–21 [View Article][PubMed]
    [Google Scholar]
  5. Chapman J.L., Nichols D.K., Martinez M.J., Raymond J.W. 2010; Animal models of orthopoxvirus infection. Vet Pathol 47:852–870 [View Article][PubMed]
    [Google Scholar]
  6. Councilman W.T., Magrath G.B., Brinckerhoff W.R. 1904; The pathological anatomy and histology of variola. J Med Res 11:12–135[PubMed]
    [Google Scholar]
  7. Drozdov S.G., Garin N.S., Dzindoyan L.S., Tarasenko V.M. 1987 [Fundamentals of Safety Practices in Microbiological and Virological Laboratories] Moscow: Medicine (in Russian);
    [Google Scholar]
  8. Earl P.L., Americo J.L., Moss B. 2015; Genetic studies of the susceptibility of classical and wild-derived inbred mouse strains to monkeypox virus. Virology 481:161–165 [View Article][PubMed]
    [Google Scholar]
  9. Fenner F., Henderson D.A., Arita I., Jezek Z., Ladny I.D. 1988 Smallpox and its Eradication Geneva: WHO;
    [Google Scholar]
  10. Hahon N., McGavran M.H. 1961; Air-borne infectivity of the variola-vaccinia group of poxviruses for the cynomolgus monkey, Macaca irus . J Infect Dis 109:294–298 [View Article][PubMed]
    [Google Scholar]
  11. Hahon N., Wilson B.J. 1960; Pathogenesis of variola in Macaca irus monkeys. Am J Hyg 71:69–80[PubMed]
    [Google Scholar]
  12. Huggins J., Goff A., Hensley L., Mucker E., Shamblin J., Wlazlowski C., Johnson W., Chapman J., Larsen T., other authors. 2009; Nonhuman primates are protected from smallpox virus or monkeypox virus challenges by the antiviral drug ST-246. Antimicrob Agents Chemother 53:2620–2625 [View Article][PubMed]
    [Google Scholar]
  13. Humlová Z., Vokurka M., Esteban M., Melková Z. 2002; Vaccinia virus induces apoptosis of infected macrophages. J Gen Virol 83:2821–2832[PubMed] [CrossRef]
    [Google Scholar]
  14. Jahrling P.B., Hensley L.E., Martinez M.J., Leduc J.W., Rubins K.H., Relman D.A., Huggins J.W. 2004; Exploring the potential of variola virus infection of cynomolgus macaques as a model for human smallpox. Proc Natl Acad Sci U S A 101:15196–15200 [View Article][PubMed]
    [Google Scholar]
  15. Jordan, R., Bailey, T. R., Rippin, S. R. (2005). Compounds, compositions and methods for treatment and prevention of orthopoxvirus infections and associated diseases. Patent WO 2004/112718 A3; International Patent Classification C07D 209/56.
  16. Jordan R., Goff A., Frimm A., Corrado M.L., Hensley L.E., Byrd C.M., Mucker E., Shamblin J., Bolken T.C., other authors. 2009; ST-246 antiviral efficacy in a nonhuman primate monkeypox model: determination of the minimal effective dose and human dose justification. Antimicrob Agents Chemother 53:1817–1822 [View Article][PubMed]
    [Google Scholar]
  17. Jordan R., Leeds J.M., Tyavanagimatt S., Hruby D.E. 2010; Development of ST-246 for treatment of poxvirus infections. Viruses 2:2409–2435 [View Article][PubMed]
    [Google Scholar]
  18. Kaptsova T.I. 1967 The development of experimental models for smallpox PhD thesis, Mechnikov's Research Institute of Vaccines and Serums, Moscow (in Russian).
    [Google Scholar]
  19. LeDuc J.W., Jahrling P.B. 2001; Strengthening national preparedness for smallpox: an update. Emerg Infect Dis 7:155–157 [View Article][PubMed]
    [Google Scholar]
  20. Leparc-Goffart I., Poirier B., Garin D., Tissier M.-H., Fuchs F., Crance J.-M. 2005; Standardization of a neutralizing anti-vaccinia antibodies titration method: an essential step for titration of vaccinia immunoglobulins and smallpox vaccines evaluation. J Clin Virol 32:47–52 [View Article][PubMed]
    [Google Scholar]
  21. Lillie R.D. 1930; Smallpox and vaccinia. The pathologic histology. Arch Path 10:241–291
    [Google Scholar]
  22. Marennikova S.S., Shchelkunov S.N. 2005 Orthopoxviruses Pathogenic for Humans New York: Springer;
    [Google Scholar]
  23. Mayr A., Herrlich A. 1960; [Cultivation of the variola virus in the infantile mouse]. Arch Gesamte Virusforsch 10:226–235 (in German) [CrossRef]
    [Google Scholar]
  24. Mucker E.M., Goff A.J., Shamblin J.D., Grosenbach D.W., Damon I.K., Mehal J.M., Holman R.C., Carroll D., Gallardo N., other authors. 2013; Efficacy of tecovirimat (ST-246) in nonhuman primates infected with variola virus (smallpox). Antimicrob Agents Chemother 57:6246–6253 [View Article][PubMed]
    [Google Scholar]
  25. Murti B.R., Shrivastav J.B. 1957; A study of biological behaviour of variola virus. II. Experimental inoculation of laboratory animals. Indian J Med Sci 11:580–587[PubMed]
    [Google Scholar]
  26. Nalca A., Hatkin J.M., Garza N.L., Nichols D.K., Norris S.W., Hruby D.E., Jordan R. 2008; Evaluation of orally delivered ST-246 as postexposure prophylactic and antiviral therapeutic in an aerosolized rabbitpox rabbit model. Antiviral Res 79:121–127 [View Article][PubMed]
    [Google Scholar]
  27. National Research Council 2011 Guide for the Care and Use of Laboratory Animals, 8th edn. Washington, DC: National Academies Press;
    [Google Scholar]
  28. Noble J. Jr 1970; A study of New and Old World monkeys to determine the likelihood of a simian reservoir of smallpox. Bull World Health Organ 42:509–514[PubMed]
    [Google Scholar]
  29. Noble J. Jr, Rich J.A. 1969; Transmission of smallpox by contact and by aerosol routes in Macaca irus . Bull World Health Organ 40:279–286[PubMed]
    [Google Scholar]
  30. Quenelle D.C., Buller R.M., Parker S., Keith K.A., Hruby D.E., Jordan R., Kern E.R. 2007; Efficacy of delayed treatment with ST-246 given orally against systemic orthopoxvirus infections in mice. Antimicrob Agents Chemother 51:689–695 [View Article][PubMed]
    [Google Scholar]
  31. Riedel S. 2005a; Smallpox and biological warfare: a disease revisited. Proc (Bayl Univ Med Cent) 18:13–20
    [Google Scholar]
  32. Riedel S. 2005b; Edward Jenner and the history of smallpox and vaccination. Proc (Bayl Univ Med Cent) 18:21–25
    [Google Scholar]
  33. Sarkar J.K., Mitra A.C., Mukherjee M.K., De S.K., Mazumdar D.G. 1973a; Virus excretion in smallpox. 1. Excretion in the throat, urine, and conjunctiva of patients. Bull World Health Organ 48:517–522[PubMed]
    [Google Scholar]
  34. Sarkar J.K., Mitra A.C., Mukherjee M.K., De S.K. 1973b; Virus excretion in smallpox. 2. Excretion in the throats of household contacts. Bull World Health Organ 48:523–527[PubMed]
    [Google Scholar]
  35. Sergeev A.A., Kabanov A.S., Bulychev L.E., Pyankov O.V., Bodnev S.A., Gorbatovskaya D.O., Zamedyanskaya A.S., Shishkina L.N., Agafonov A.P., Sergeev A.N. 2013; [The study of the sensitivities of animals and primary target cell cultures to particularly dangerous orthopoxiruses]. In Proceedings of the Scientific and Practical Conference “Diagnosis and Prevention of Infectious Diseases”, Novosibirsk pp. 23–25 Novosibirsk: Areal (in Russian)
    [Google Scholar]
  36. Sergeev A.A., Kabanov A.S., Bulychev L.E., Sergeev A.A., Pyankov O.V., Bodnev S.A., Galahova D.O., Zamedyanskaya A.S., Titova K.A., other authors. 2015a; The possibility of using the ICR mouse as an animal model to assess antimonkeypox drug efficacy. Transbound Emerg Dis. [View Article]
    [Google Scholar]
  37. Sergeev A.A., Kabanov A.S., Bulychev L.E., Sergeev A.A., Pyankov O.V., Bodnev S.A., Galahova D.O., Zamedyanskaya A.S., Titova K.A., other authors. 2015b; Using the ground squirrel (Marmota bobak) as an animal model to assess monkeypox drug efficacy. Transbound Emerg Dis. [View Article]
    [Google Scholar]
  38. Shafrikova, R. A. (1970). [The properties of freshly isolated strains of variola virus and the study of the virus variability under natural and experimental conditions]. PhD thesis, Mechnikov's Research Institute of Vaccines and Serums, Moscow (in Russian)..
  39. Shishkina, L. N., Sergeev, A. N., Agafonov, A. P., Sergeev, A. A., Kabanov, A. S., Bulychev, L. E., Sergeev, A. A., Gorbatovskaya, D. O., P'yankov, O. V. and other authors (2015). [A therapeutic and prophylactic drug against variola virus and methods for its preparation and use]. Patent RU no. 2543338, Bulletin no. 6, dated 02.27.15 (in Russian)..
  40. Smith S.K., Olson V.A., Karem K.L., Jordan R., Hruby D.E., Damon I.K. 2009; In vitro efficacy of ST246 against smallpox and monkeypox. Antimicrob Agents Chemother 53:1007–1012 [View Article][PubMed]
    [Google Scholar]
  41. Smith S.K., Self J., Weiss S., Carroll D., Braden Z., Regnery R.L., Davidson W., Jordan R., Hruby D.E., Damon I.K. 2011; Effective antiviral treatment of systemic orthopoxvirus disease: ST-246 treatment of prairie dogs infected with monkeypox virus. J Virol 85:9176–9187 [View Article][PubMed]
    [Google Scholar]
  42. Stabenow J., Buller R.M., Schriewer J., West C., Sagartz J.E., Parker S. 2010; A mouse model of lethal infection for evaluating prophylactics and therapeutics against monkeypox virus. J Virol 84:3909–3920 [View Article][PubMed]
    [Google Scholar]
  43. Wahl-Jensen V., Cann J.A., Rubins K.H., Huggins J.W., Fisher R.W., Johnson A.J., de Kok-Mercado F., Larsen T., Raymond J.L., other authors. 2011; Progression of pathogenic events in cynomolgus macaques infected with variola virus. PLoS One 6:e24832 [View Article][PubMed]
    [Google Scholar]
  44. Yang G., Pevear D.C., Davies M.H., Collett M.S., Bailey T., Rippen S., Barone L., Burns C., Rhodes G., other authors. 2005; An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus Challenge. J Virol 79:13139–13149 [View Article][PubMed]
    [Google Scholar]
  45. Zaks L. 1976 Statistical Estimation Moscow: Statistics (in Russian);
    [Google Scholar]
  46. Zamedyanskaya A.S., Titova K.A., Sergeev A.A., Kabanov A.S., Bulychev L.E., Sergeev A.A., Galakhova D.O., Nesterov A.E., Nosareva O.V., other authors. 2014; Infectious properties of variola versus on primary human and mouse monocyte-macrophage cultures. In 1st International Conference of Young Scientists: Collected Abstracts of Novosibirsk State University pp. 64–67 Novosibirsk: RIC NSU (In Russian)
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000216
Loading
/content/journal/jgv/10.1099/vir.0.000216
Loading

Data & Media loading...

Most cited Most Cited RSS feed