1887

Abstract

Here, we report the detection and partial genome characterization of two novel reptilian parvoviruses derived from a short-tailed pygmy chameleon () and a corn snake () along with the complete genome analysis of the first lizard parvovirus, obtained from four bearded dragons (). Both homology searches and phylogenetic tree reconstructions demonstrated that all are members of the genus . Even though most dependoparvoviruses replicate efficiently only in co-infections with large DNA viruses, no such agents could be detected in one of the bearded dragon samples, hence the possibility of autonomous replication was explored. The alternative ORF encoding the full assembly activating protein (AAP), typical for the genus, could be obtained from reptilian parvoviruses for the first time, with a structure that appears to be more ancient than that of avian and mammalian parvoviruses. All three viruses were found to harbour short introns as previously observed for snake adeno-associated virus, shorter than that of any non-reptilian dependoparvovirus. According to the phylogenetic calculations based on full non-structural protein (Rep) and AAP sequences, the monophyletic cluster of reptilian parvoviruses seems to be the most basal out of all lineages of genus . The suspected ability for autonomous replication, results of phylogenetic tree reconstruction, intron lengths and the structure of the AAP suggested that a single Squamata origin instead of the earlier assumed diapsid (common avian–reptilian) origin is more likely for the genus of the family .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000215
2015-09-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/9/2769.html?itemId=/content/journal/jgv/10.1099/vir.0.000215&mimeType=html&fmt=ahah

References

  1. Abascal F., Zardoya R., Posada D.. ( 2005;). ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104–2105 [CrossRef] [PubMed].
    [Google Scholar]
  2. Ahne W., Scheinert P.. ( 1989;). Reptilian viruses: isolation of parvovirus-like particles from corn snake Elapha guttata (Colubridae). Zentralbl Veterinarmed B 36: 409–412 [PubMed].
    [Google Scholar]
  3. Allander T., Emerson S.U., Engle R.E., Purcell R.H., Bukh J.. ( 2001;). A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species. Proc Natl Acad Sci U S A 98: 11609–11614 [CrossRef] [PubMed].
    [Google Scholar]
  4. Belyi V.A., Levine A.J., Skalka A.M.. ( 2010;). Sequences from ancestral single-stranded DNA viruses in vertebrate genomes: the Parvoviridae Circoviridae are more than 40 to 50 million years old. J Virol 84: 12458–12462 [CrossRef] [PubMed].
    [Google Scholar]
  5. Brown K.E., Green S.W., Young N.S.. ( 1995;). Goose parvovirus – an autonomous member of the dependovirus genus?. Virology 210: 283–291 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chiorini J.A., Kim F., Yang L., Kotin R.M.. ( 1999;). Cloning and characterization of adeno-associated virus type 5. J Virol 73: 1309–1319 [PubMed].
    [Google Scholar]
  7. Cotmore S.F., Agbandje-McKenna M., Chiorini J.A., Mukha D.V., Pintel D.J., Qiu J., Soderlund-Venermo M., Tattersall P., Tijssen P., other authors. ( 2014;). The family Parvoviridae. Arch Virol 159: 1239–1247 [CrossRef] [PubMed].
    [Google Scholar]
  8. Day J.M., Zsak L.. ( 2010;). Determination and analysis of the full-length chicken parvovirus genome. Virology 399: 59–64 [CrossRef] [PubMed].
    [Google Scholar]
  9. Estevez C., Villegas P.. ( 2004;). Sequence analysis, viral rescue from infectious clones and generation of recombinant virions of the avian adeno-associated virus. Virus Res 105: 195–208 [CrossRef] [PubMed].
    [Google Scholar]
  10. Farkas S., Gál J.. ( 2008;). First Hungarian report of inclusion body hepatitis associated with adenovirus and secondary parvovirus infection in an Indonesian pit viper (Parias (Trimeresurus) hageni). Magy Allatorvosok 130: 755–761 (in Hungarian).
    [Google Scholar]
  11. Farkas S.L., Zádori Z., Benkö M., Essbauer S., Harrach B., Tijssen P.. ( 2004;). A parvovirus isolated from royal python (Python regius) is a member of the genus Dependovirus. J Gen Virol 85: 555–561 [CrossRef] [PubMed].
    [Google Scholar]
  12. Galli A., Cervelli T.. ( 2014;). Inverted terminal repeats of adeno-associated virus decrease random integration of a gene targeting fragment in Saccharomyces cerevisiae. BMC Mol Biol 15: 5 [CrossRef] [PubMed].
    [Google Scholar]
  13. Gao G., Alvira M.R., Somanathan S., Lu Y., Vandenberghe L.H., Rux J.J., Calcedo R., Sanmiguel J., Abbas Z., Wilson J.M.. ( 2003;). Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc Natl Acad Sci U S A 100: 6081–6086 [CrossRef] [PubMed].
    [Google Scholar]
  14. Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O.. ( 2010;). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321 [CrossRef] [PubMed].
    [Google Scholar]
  15. Hanson L.A., Rudis M.R., Vasquez-Lee M., Montgomery R.D.. ( 2006;). A broadly applicable method to characterize large DNA viruses and adenoviruses based on the DNA polymerase gene. Virol J 3: 28 [CrossRef] [PubMed].
    [Google Scholar]
  16. Heldstab A., Bestetti G.. ( 1984;). Virus associated gastrointestinal disease in snakes. J Zoo Anim Med 15: 118–128 [CrossRef].
    [Google Scholar]
  17. Ilyina T.V., Koonin E.V.. ( 1992;). Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res 20: 3279–3285 [CrossRef] [PubMed].
    [Google Scholar]
  18. Jacobson E.R., Kopit W., Kennedy F.A., Funk R.S.. ( 1996;). Coinfection of a bearded dragon, Pogona vitticeps, with adenovirus- and dependovirus-like viruses. Vet Pathol 33: 343–346 [CrossRef] [PubMed].
    [Google Scholar]
  19. Katzourakis A., Gifford R.J.. ( 2010;). Endogenous viral elements in animal genomes. PLoS Genet 6: e1001191 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kim D.Y., Mitchell M.A., Bauer R.W., Poston R., Cho D.Y.. ( 2002;). An outbreak of adenoviral infection in inland bearded dragons (Pogona vitticeps) coinfected with dependovirus and coccidial protozoa (Isospora sp.). J Vet Diagn Invest 14: 332–334 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kotin R.-M., Smith R.-H.. ( 2001;). Dependovirus. . In The Springer Index of Viruses, pp. 703–707. Edited by Tidona C. A., Darai G., Büchen-Osmond C.. Berlin: Springer;.
    [Google Scholar]
  22. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., other authors. ( 2007;). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948 [CrossRef] [PubMed].
    [Google Scholar]
  23. Le Gall-Reculé G., Jestin V.. ( 1994;). Biochemical and genomic characterization of muscovy duck parvovirus. Arch Virol 139: 121–131 [CrossRef] [PubMed].
    [Google Scholar]
  24. Li Y., Ge X., Hon C.C., Zhang H., Zhou P., Zhang Y., Wu Y., Wang L.F., Shi Z.. ( 2010;). Prevalence and genetic diversity of adeno-associated viruses in bats from China. J Gen Virol 91: 2601–2609 [CrossRef] [PubMed].
    [Google Scholar]
  25. Mizokami M., Orito E., Ohba K., Ikeo K., Lau J.Y., Gojobori T.. ( 1997;). Constrained evolution with respect to gene overlap of hepatitis B virus. J Mol Evol 44: (Suppl 1), S83–S90 [CrossRef] [PubMed].
    [Google Scholar]
  26. Naumer M., Sonntag F., Schmidt K., Nieto K., Panke C., Davey N.E., Popa-Wagner R., Kleinschmidt J.A.. ( 2012;). Properties of the adeno-associated virus assembly-activating protein. J Virol 86: 13038–13048 [CrossRef] [PubMed].
    [Google Scholar]
  27. Ogawa M., Ahne W., Essbauer S.. ( 1992;). Reptilian viruses: adenovirus-like agent isolated from royal python (Python regius). Zentralbl Veterinarmed B 39: 732–736 [PubMed].
    [Google Scholar]
  28. Pénzes J.J., Benkö M.. ( 2014;). Novel parvovirus from the worm lizard Trogonophis wiegmanni – first virus ever detected in amphisbaenian hosts. Acta Vet Hung 62: 284–292 [CrossRef] [PubMed].
    [Google Scholar]
  29. Pénzes J., Doszpoly A.. ( 2011;). Detection of adenoviral infection in bearded dragons (Pogona vitticeps) in Hungary. Magy Allatorvosok 133: 432–437 (in Hungarian).
    [Google Scholar]
  30. Qiu J., Pintel D.. ( 2008;). Processing of adeno-associated virus RNA. Front Biosci 13: 3101–3115 [CrossRef] [PubMed].
    [Google Scholar]
  31. Qiu J., Yoto Y., Tullis G., Pintel D.J.. ( 2006;). Parvovirus RNA processing strategies. . In Parvoviruses, pp. 253–273. Edited by Kerr J. R., Cotmore S., Bloom M. E., Linden R. M., Parrish C. R.. London: Hodder Arnold;.
    [Google Scholar]
  32. Ruffing M., Heid H., Kleinschmidt J.A.. ( 1994;). Mutations in the carboxy terminus of adeno-associated virus 2 capsid proteins affect viral infectivity: lack of an RGD integrin-binding motif. J Gen Virol 75: 3385–3392 [CrossRef] [PubMed].
    [Google Scholar]
  33. Smith D.H., Ward P., Linden R.M.. ( 1999;). Comparative characterization of rep proteins from the helper-dependent adeno-associated virus type 2 and the autonomous goose parvovirus. J Virol 73: 2930–2937 [PubMed].
    [Google Scholar]
  34. Sonntag F., Köther K., Schmidt K., Weghofer M., Raupp C., Nieto K., Kuck A., Gerlach B., Böttcher B., other authors. ( 2011;). The assembly-activating protein promotes capsid assembly of different adeno-associated virus serotypes. J Virol 85: 12686–12697 [CrossRef] [PubMed].
    [Google Scholar]
  35. Staden R., Beal K.F., Bonfield J.K.. ( 2000;). The Staden package, 1998. Methods Mol Biol 132: 115–130 [PubMed].
    [Google Scholar]
  36. Tijssen P., Bergoin M.. ( 1995;). Densonucleosis viruses constitute an increasingly diversified subfamily among the parvoviruses. Semin Virol 6: 347–355 [CrossRef].
    [Google Scholar]
  37. Tijssen P., Agbandje-McKenna M., Almendral J.M., Bergoin M., Flegel T.W., Hedman K., Kleinschmidt J.A., Li Y., Pintel D.J., Tattersall P.. ( 2011;). Parvoviridae. . In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, pp. 375–395. Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J.. London: Academic Press;.
    [Google Scholar]
  38. Tse H., Tsoi H.W., Teng J.L., Chen X.C., Liu H., Zhou B., Zheng B.J., Woo P.C., Lau S.K., Yuen K.Y.. ( 2011;). Discovery and genomic characterization of a novel ovine partetravirus and a new genotype of bovine partetravirus. PLoS One 6: e25619 [CrossRef] [PubMed].
    [Google Scholar]
  39. VanDevanter D.R., Warrener P., Bennett L., Schultz E.R., Coulter S., Garber R.L., Rose T.M.. ( 1996;). Detection and analysis of diverse herpesviral species by consensus primer PCR. J Clin Microbiol 34: 1666–1671 [PubMed].
    [Google Scholar]
  40. Wellehan J.F., Johnson A.J., Harrach B., Benkö M., Pessier A.P., Johnson C.M., Garner M.M., Childress A., Jacobson E.R.. ( 2004;). Detection and analysis of six lizard adenoviruses by consensus primer PCR provides further evidence of a reptilian origin for the atadenoviruses. J Virol 78: 13366–13369 [CrossRef] [PubMed].
    [Google Scholar]
  41. Wozniak E.-J., DeNardo D.-F., Brewer A., Wong V., Tarara R.-P.. ( 2000;). Identification of adenovirus and dependovirus-like agents in an outbreak of fatal gastroenteritis in captive born California mountain kingsnakes, Lampropeltis zonata multicincta. J Herpetological Med Surg 10: 4–7.
    [Google Scholar]
  42. Wu P., Xiao W., Conlon T., Hughes J., Agbandje-McKenna M., Ferkol T., Flotte T., Muzyczka N.. ( 2000;). Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J Virol 74: 8635–8647 [CrossRef] [PubMed].
    [Google Scholar]
  43. Yakobson B., Koch T., Winocour E.. ( 1987;). Replication of adeno-associated virus in synchronized cells without the addition of a helper virus. J Virol 61: 972–981 [PubMed].
    [Google Scholar]
  44. Zádori Z., Stefancsik R., Rauch T., Kisary J.. ( 1995;). Analysis of the complete nucleotide sequences of goose and muscovy duck parvoviruses indicates common ancestral origin with adeno-associated virus 2. Virology 212: 562–573 [CrossRef] [PubMed].
    [Google Scholar]
  45. Zádori Z., Szelei J., Lacoste M.C., Li Y., Gariépy S., Raymond P., Allaire M., Nabi I.R., Tijssen P.. ( 2001;). A viral phospholipase A2 is required for parvovirus infectivity. Dev Cell 1: 291–302 [CrossRef] [PubMed].
    [Google Scholar]
  46. Zádori Z., Szelei J., Tijssen P.. ( 2005;). SAT: a late NS protein of porcine parvovirus. J Virol 79: 13129–13138 [CrossRef] [PubMed].
    [Google Scholar]
  47. Zimmerman L.M., Vogel L.A., Bowden R.M.. ( 2010;). Understanding the vertebrate immune system: insights from the reptilian perspective. J Exp Biol 213: 661–671 [CrossRef] [PubMed].
    [Google Scholar]
  48. Zsák L., Strother K.O., Kisary J.. ( 2008;). Partial genome sequence analysis of parvoviruses associated with enteric disease in poultry. Avian Pathol 37: 435–441 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000215
Loading
/content/journal/jgv/10.1099/vir.0.000215
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error