1887

Abstract

The 3′-terminal domain of the most conserved ORF1b in three of the four families of the order (except for the family ) encodes a (putative) 2′--methyltransferase (2′--MTase), known as non structural protein (nsp) 16 in the family and implicated in methylation of the 5′ cap structure of nidoviral mRNAs. As with coronavirus transcripts, arterivirus mRNAs are assumed to possess a 5′ cap although no candidate MTases have been identified thus far. To address this knowledge gap, we analysed the uncharacterized nsp12 of arteriviruses, which occupies the ORF1b position equivalent to that of the nidovirus 2′-O-MTase (coronavirus nsp16). In our in-depth bioinformatics analysis of nsp12, the protein was confirmed to be family specific whilst having diverged much further than other nidovirus ORF1b-encoded proteins, including those of the family . Only one invariant and several partially conserved, predominantly aromatic residues were identified in nsp12, which may adopt a structure with alternating α-helices and β-strands, an organization also found in known MTases. However, no statistically significant similarity was found between nsp12 and the twofold larger coronavirus nsp16, nor could we detect MTase activity in biochemical assays using recombinant equine arteritis virus (EAV) nsp12. Our further analysis established that this subunit is essential for replication of this prototypic arterivirus. Using reverse genetics, we assessed the impact of 25 substitutions at 14 positions, yielding virus phenotypes ranging from WT-like to non-viable. Notably, replacement of the invariant phenylalanine 109 with tyrosine was lethal. We concluded that nsp12 plays an essential role during EAV replication, possibly by acting as a co-factor for another enzyme.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000209
2015-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/9/2643.html?itemId=/content/journal/jgv/10.1099/vir.0.000209&mimeType=html&fmt=ahah

References

  1. Bailey A.L., Lauck M., Sibley S.D., Pecotte J., Rice K., Weny G., Tumukunde A., Hyeroba D., Greene J., other authors. 2014; Two novel simian arteriviruses in captive and wild baboons (Papio spp.). J Virol 88:13231–13239 [View Article][PubMed]
    [Google Scholar]
  2. Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J., Sayers E.W. 2013; GenBank. Nucleic Acids Res 41:(D1)D36–D42 [View Article][PubMed]
    [Google Scholar]
  3. Bouvet M., Debarnot C., Imbert I., Selisko B., Snijder E.J., Canard B., Decroly E. 2010; In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog 6:e1000863 [View Article][PubMed]
    [Google Scholar]
  4. Buchan D.W., Minneci F., Nugent T.C., Bryson K., Jones D.T. 2013; Scalable web services for the psipred Protein Analysis Workbench. Nucleic Acids Res 41:(W1)W349–W357 [View Article][PubMed]
    [Google Scholar]
  5. Chen Z., Faaberg K.S., Plagemann P.G. 1994; Determination of the 5′ end of the lactate dehydrogenase-elevating virus genome by two independent approaches. J Gen Virol 75:925–930 [View Article][PubMed]
    [Google Scholar]
  6. Chen Y., Cai H., Pan J., Xiang N., Tien P., Ahola T., Guo D. 2009; Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci U S A 106:3484–3489 [View Article][PubMed]
    [Google Scholar]
  7. Chen Y., Su C., Ke M., Jin X., Xu L., Zhang Z., Wu A., Sun Y., Yang Z., other authors. 2011; Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog 7:e1002294 [View Article][PubMed]
    [Google Scholar]
  8. Cole C., Barber J.D., Barton G.J. 2008; The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:(Web Server)W197–W201 [View Article][PubMed]
    [Google Scholar]
  9. de Groot R.J., Baker S.C., Baric R., Enjuanes L., Gorbalenya A.E., Holmes K.V., Perlman S., Poon L.L., Rottier P.J., other authors. 2012a; Family Coronaviridae . In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses pp. 806–828 Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. Amsterdam: Elsevier Academic Press;
    [Google Scholar]
  10. de Groot R.J., Cowley J.A., Enjuanes L., Faaberg K.S., Perlman S., Rottier P.J., Snijder E.J., Ziebuhr J., Gorbalenya A.E. 2012b; Order Nidovirales . In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses pp. 785–795 Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. Amsterdam: Elsevier Academic Press;
    [Google Scholar]
  11. Decroly E., Imbert I., Coutard B., Bouvet M., Selisko B., Alvarez K., Gorbalenya A.E., Snijder E.J., Canard B. 2008; Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2′O)-methyltransferase activity. J Virol 82:8071–8084 [View Article][PubMed]
    [Google Scholar]
  12. Decroly E., Debarnot C., Ferron F., Bouvet M., Coutard B., Imbert I., Gluais L., Papageorgiou N., Sharff A., other authors. 2011; Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog 7:e1002059 [View Article][PubMed]
    [Google Scholar]
  13. Dunowska M., Biggs P.J., Zheng T., Perrott M.R. 2012; Identification of a novel nidovirus associated with a neurological disease of the Australian brushtail possum (Trichosurus vulpecula). Vet Microbiol 156:418–424 [View Article][PubMed]
    [Google Scholar]
  14. Edgar R.C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  15. Faaberg K.S., Balasuriya U.B., Brinton M.A., Gorbalenya A., Leung F.C.C., Nauwynck H., Snijder E.J., Stadejek T., Yang H., Yoo D. 2012; Family Arteriviridae . In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses pp. 796–805 Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. Amsterdam: Elsevier Academic Press;
    [Google Scholar]
  16. Finn R.D., Clements J., Eddy S.R. 2011; hmmer web server: interactive sequence similarity searching. Nucleic Acids Res 39:(suppl)W29–W37 [View Article][PubMed]
    [Google Scholar]
  17. Finn R.D., Bateman A., Clements J., Coggill P., Eberhardt R.Y., Eddy S.R., Heger A., Hetherington K., Holm L., other authors. 2014; Pfam: the protein families database. Nucleic Acids Res 42:(D1)D222–D230 [View Article][PubMed]
    [Google Scholar]
  18. Fujimura T., Esteban R. 2011; Cap-snatching mechanism in yeast L-A double-stranded RNA virus. Proc Natl Acad Sci U S A 108:17667–17671 [View Article][PubMed]
    [Google Scholar]
  19. Gohara D.W., Ha C.S., Kumar S., Ghosh B., Arnold J.J., Wisniewski T.J., Cameron C.E. 1999; Production of ‘authentic’ poliovirus RNA-dependent RNA polymerase (3Dpol) by ubiquitin-protease-mediated cleavage in Escherichia coli . Protein Expr Purif 17:128–138 [View Article][PubMed]
    [Google Scholar]
  20. Gorbalenya A.E. 2001; Big nidovirus genome. When count and order of domains matter. Adv Exp Med Biol 494:1–17[PubMed] [CrossRef]
    [Google Scholar]
  21. Gorbalenya A.E., Lieutaud P., Harris M.R., Coutard B., Canard B., Kleywegt G.J., Kravchenko A.A., Samborskiy D.V., Sidorov I.A., other authors. 2010; Practical application of bioinformatics by the multidisciplinary VIZIER consortium. Antiviral Res 87:95–110 [View Article][PubMed]
    [Google Scholar]
  22. Grant B.J., Rodrigues A.P., ElSawy K.M., McCammon J.A., Caves L.S. 2006; Bio3d: an r package for the comparative analysis of protein structures. Bioinformatics 22:2695–2696 [View Article][PubMed]
    [Google Scholar]
  23. Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. 2010; New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321 [View Article][PubMed]
    [Google Scholar]
  24. Henikoff S., Henikoff J.G. 1992; Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89:10915–10919 [View Article][PubMed]
    [Google Scholar]
  25. Ivanov K.A., Ziebuhr J. 2004; Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5′-triphosphatase activities. J Virol 78:7833–7838 [View Article][PubMed]
    [Google Scholar]
  26. Ivanov K.A., Thiel V., Dobbe J.C., van der Meer Y., Snijder E.J., Ziebuhr J. 2004; Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 78:5619–5632 [View Article][PubMed]
    [Google Scholar]
  27. Jin X., Chen Y., Sun Y., Zeng C., Wang Y., Tao J., Wu A., Yu X., Zhang Z., other authors. 2013; Characterization of the guanine-N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP. Virus Res 176:45–52 [View Article][PubMed]
    [Google Scholar]
  28. Kang H., Bhardwaj K., Li Y., Palaninathan S., Sacchettini J., Guarino L., Leibowitz J.L., Kao C.C. 2007; Biochemical and genetic analyses of murine hepatitis virus Nsp15 endoribonuclease. J Virol 81:13587–13597 [View Article][PubMed]
    [Google Scholar]
  29. Lai M.M., Stohlman S.A. 1981; Comparative analysis of RNA genomes of mouse hepatitis viruses. J Virol 38:661–670[PubMed]
    [Google Scholar]
  30. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., other authors. 2007; Clustal W Clustal X version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  31. Lauber C., Gorbalenya A.E. 2012; Partitioning the genetic diversity of a virus family: approach and evaluation through a case study of picornaviruses. J Virol 86:3890–3904 [View Article][PubMed]
    [Google Scholar]
  32. Lauber C., Goeman J.J., Parquet M.C., Nga P.T., Snijder E.J., Morita K., Gorbalenya A.E. 2013; The footprint of genome architecture in the largest genome expansion in RNA viruses. PLoS Pathog 9:e1003500 [View Article][PubMed]
    [Google Scholar]
  33. Lauck M., Hyeroba D., Tumukunde A., Weny G., Lank S.M., Chapman C.A., O'Connor D.H., Friedrich T.C., Goldberg T.L. 2011; Novel, divergent simian hemorrhagic fever viruses in a wild Ugandan red colobus monkey discovered using direct pyrosequencing. PLoS One 6:e19056 [View Article][PubMed]
    [Google Scholar]
  34. Lauck M., Sibley S.D., Hyeroba D., Tumukunde A., Weny G., Chapman C.A., Ting N., Switzer W.M., Kuhn J.H., other authors. 2013; Exceptional simian hemorrhagic fever virus diversity in a wild African primate community. J Virol 87:688–691 [View Article][PubMed]
    [Google Scholar]
  35. Menachery V.D., Yount B.L. Jr, Josset L., Gralinski L.E., Scobey T., Agnihothram S., Katze M.G., Baric R.S. 2014; Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2′-O-methyltransferase activity. J Virol 88:4251–4264 [View Article][PubMed]
    [Google Scholar]
  36. Mir M.A., Duran W.A., Hjelle B.L., Ye C., Panganiban A.T. 2008; Storage of cellular 5′ mRNA caps in P bodies for viral cap-snatching. Proc Natl Acad Sci U S A 105:19294–19299 [View Article][PubMed]
    [Google Scholar]
  37. Molenkamp R., Greve S., Spaan W.J., Snijder E.J. 2000; Efficient homologous RNA recombination and requirement for an open reading frame during replication of equine arteritis virus defective interfering RNAs. J Virol 74:9062–9070 [View Article][PubMed]
    [Google Scholar]
  38. Nedialkova D.D., Gorbalenya A.E., Snijder E.J. 2010; Arterivirus Nsp1 modulates the accumulation of minus-strand templates to control the relative abundance of viral mRNAs. PLoS Pathog 6:e1000772 [View Article][PubMed]
    [Google Scholar]
  39. Nga P.T., Parquet M.C., Lauber C., Parida M., Nabeshima T., Yu F., Thuy N.T., Inoue S., Ito T., other authors. 2011; Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes. PLoS Pathog 7:e1002215 [View Article][PubMed]
    [Google Scholar]
  40. Paradis E., Claude J., Strimmer K. 2004; ape: Analyses of Phylogenetics and Evolution in r language. Bioinformatics 20:289–290 [View Article][PubMed]
    [Google Scholar]
  41. Pasternak A.O., Spaan W.J., Snijder E.J. 2006; Nidovirus transcription: how to make sense…?. J Gen Virol 87:1403–1421 [View Article][PubMed]
    [Google Scholar]
  42. Posthuma C.C., Nedialkova D.D., Zevenhoven-Dobbe J.C., Blokhuis J.H., Gorbalenya A.E., Snijder E.J. 2006; Site-directed mutagenesis of the nidovirus replicative endoribonuclease NendoU exerts pleiotropic effects on the arterivirus life cycle. J Virol 80:1653–1661 [View Article][PubMed]
    [Google Scholar]
  43. Pruitt K.D., Brown G.R., Hiatt S.M., Thibaud-Nissen F., Astashyn A., Ermolaeva O., Farrell C.M., Hart J., Landrum M.J., other authors. 2014; RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 42:(D1)D756–D763 [View Article][PubMed]
    [Google Scholar]
  44. R Development Core Team 2011 r: A Language and Environment for Statistical Computing Vienna: R Foundation for Statistical Computing;
    [Google Scholar]
  45. Reich S., Guilligay D., Pflug A., Malet H., Berger I., Crépin T., Hart D., Lunardi T., Nanao M., other authors. 2014; Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature 516:361–366 [View Article][PubMed]
    [Google Scholar]
  46. Remmert M., Biegert A., Hauser A., Söding J. 2012; HHblits: lightning-fast iterative protein sequence searching by HMM–HMM alignment. Nat Methods 9:173–175 [View Article][PubMed]
    [Google Scholar]
  47. Robert X., Gouet P. 2014; Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:(W1)W320–W324 [View Article][PubMed]
    [Google Scholar]
  48. Sagripanti J.L., Zandomeni R.O., Weinmann R. 1986; The cap structure of simian hemorrhagic fever virion RNA. Virology 151:146–150 [View Article][PubMed]
    [Google Scholar]
  49. Sang Y., Rowland R.R., Blecha F. 2014; Antiviral regulation in porcine monocytic cells at different activation states. J Virol 88:11395–11410 [View Article][PubMed]
    [Google Scholar]
  50. Seybert A., van Dinten L.C., Snijder E.J., Ziebuhr J. 2000; Biochemical characterization of the equine arteritis virus helicase suggests a close functional relationship between arterivirus and coronavirus helicases. J Virol 74:9586–9593 [View Article][PubMed]
    [Google Scholar]
  51. Sidorov I.A., Reshetov D.A., Gorbalenya A.E. 2009; snad: Sequence Name Annotation-based Designer. BMC Bioinformatics 10:251 [View Article][PubMed]
    [Google Scholar]
  52. Snijder E.J., Kikkert M., Fang Y. 2013; Arterivirus molecular biology and pathogenesis. J Gen Virol 94:2141–2163 [View Article][PubMed]
    [Google Scholar]
  53. Söding J. 2005; Protein homology detection by HMM–HMM comparison. Bioinformatics 21:951–960 [View Article][PubMed]
    [Google Scholar]
  54. van Aken D., Zevenhoven-Dobbe J., Gorbalenya A.E., Snijder E.J. 2006; Proteolytic maturation of replicase polyprotein pp1a by the nsp4 main proteinase is essential for equine arteritis virus replication and includes internal cleavage of nsp7. J Gen Virol 87:3473–3482 [View Article][PubMed]
    [Google Scholar]
  55. van den Born E., Gultyaev A.P., Snijder E.J. 2004; Secondary structure and function of the 5′-proximal region of the equine arteritis virus RNA genome. RNA 10:424–437 [View Article][PubMed]
    [Google Scholar]
  56. van der Meer Y., van Tol H., Locker J.K., Snijder E.J. 1998; ORF1a-encoded replicase subunits are involved in the membrane association of the arterivirus replication complex. J Virol 72:6689–6698[PubMed]
    [Google Scholar]
  57. van Dinten L.C., den Boon J.A., Wassenaar A.L., Spaan W.J., Snijder E.J. 1997; An infectious arterivirus cDNA clone: identification of a replicase point mutation that abolishes discontinuous mRNA transcription. Proc Natl Acad Sci U S A 94:991–996 [View Article][PubMed]
    [Google Scholar]
  58. van Vliet A.L., Smits S.L., Rottier P.J., de Groot R.J. 2002; Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus. EMBO J 21:6571–6580 [View Article][PubMed]
    [Google Scholar]
  59. Wassenaar A.L., Spaan W.J., Gorbalenya A.E., Snijder E.J. 1997; Alternative proteolytic processing of the arterivirus replicase ORF1a polyprotein: evidence that NSP2 acts as a cofactor for the NSP4 serine protease. J Virol 71:9313–9322[PubMed]
    [Google Scholar]
  60. Whelan S, Goldman N. 2001; A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach. Mol Biol Evol 18:691–699 [CrossRef]
    [Google Scholar]
  61. Zhou Y., Ray D., Zhao Y., Dong H., Ren S., Li Z., Guo Y., Bernard K.A., Shi P.Y., Li H. 2007; Structure and function of flavivirus NS5 methyltransferase. J Virol 81:3891–3903 [View Article][PubMed]
    [Google Scholar]
  62. Züst R., Cervantes-Barragan L., Habjan M., Maier R., Neuman B.W., Ziebuhr J., Szretter K.J., Baker S.C., Barchet W., other authors. 2011; Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12:137–143 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000209
Loading
/content/journal/jgv/10.1099/vir.0.000209
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error