1887

Abstract

The L6 region of bovine adenovirus type 3 (BAdV-3) encodes a non-structural protein named 100K. Rabbit antiserum raised against BAdV-3 100K recognized a protein of 130 kDa at 12–24 h and proteins of 130, 100, 95 and 15 kDa at 36–48 h after BAdV-3 infection. The 100K species localized to the nucleus and the cytoplasm of BAdV-3-infected cells. In contrast, 100K localized predominantly to the cytoplasm of the transfected cells. However, BAdV-3 infection of cells transfected with 100K–enhanced yellow fluorescent protein-expressing plasmid detected fluorescent protein in the nucleus of the cells, suggesting that other viral proteins may be required for the nuclear localization of 100K. Interaction of BAdV-3 100K with BAdV-3 33K protein did not alter the cytoplasmic localization of 100K. However, co-expression of BAdV-3 100K and BAdV-3 protease localized 100K to the nucleolus of the transfected cells. Subsequent analysis suggested that BAdV-3 protease cleaves 100K at two identified potential protease cleavage sites (aa 740–745 and 781–786) in transfected or BAdV-3-infected cells. The cleaved C terminus (107 aa) was localized to the nucleolus of the transfected cells. Further analysis suggested that the cleaved C terminus contains a bipartite nuclear localization signal and utilizes import receptor importin-α3 of the classical importin-α/β transport pathway for nuclear transport. Successful isolation of recombinant BAdV-3 expressing mutant 100K (substitution of alanine for glycine in the potential protease cleavage site) suggested that cytoplasmic cleavage of BAdV-3 100K by adenoviral protease is not essential for virus replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000205
2015-09-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/9/2749.html?itemId=/content/journal/jgv/10.1099/vir.0.000205&mimeType=html&fmt=ahah

References

  1. Andrade F. , Bull H.G. , Thornberry N.A. , Ketner G.W. , Casciola-Rosen L.A. , Rosen A. . ( 2001;). Adenovirus L4-100K assembly protein is a granzyme B substrate that potently inhibits granzyme B-mediated cell death. Immunity 14: 751–761 [CrossRef] [PubMed].
    [Google Scholar]
  2. Ayalew L.E. . ( 2014;). The role of bovine adenovirus (BAdV-3) protein pVIII in virus replication PhD thesis University of Saskatchewan: Saskatoo, Canada;.
    [Google Scholar]
  3. Berk A.J. . ( 2007;). Adenoviridae: the viruses and their replication. . In Fields Virology, 5th edn, pp. 2355–2394. Edited by Knipe P. H. D. . Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins;.
    [Google Scholar]
  4. Blanchette P. , Wimmer P. , Dallaire F. , Cheng C.Y. , Branton P.E. . ( 2013;). Aggresome formation by the adenoviral protein E1B55K is not conserved among adenovirus species and is not required for efficient degradation of nuclear substrates. J Virol 87: 4872–4881 [CrossRef] [PubMed].
    [Google Scholar]
  5. Chambers T.J. , Weir R.C. , Grakoui A. , McCourt D.W. , Bazan J.F. , Fletterick R.J. , Rice C.M. . ( 1990;). Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proc Natl Acad Sci U S A 87: 8898–8902 [CrossRef] [PubMed].
    [Google Scholar]
  6. Cheng C.Y. , Gilson T. , Wimmer P. , Schreiner S. , Ketner G. , Dobner T. , Branton P.E. , Blanchette P. . ( 2013;). Role of E1B55K in E4orf6/E1B55K E3 ligase complexes formed by different human adenovirus serotypes. J Virol 87: 6232–6245 [CrossRef] [PubMed].
    [Google Scholar]
  7. Cuesta R. , Xi Q. , Schneider R.J. . ( 2000;). Adenovirus-specific translation by displacement of kinase Mnk1 from cap-initiation complex eIF4F. EMBO J 19: 3465–3474 [CrossRef] [PubMed].
    [Google Scholar]
  8. Diouri M. , Keyvani-Amineh H. , Geoghegan K.F. , Weber J.M. . ( 1996;). Cleavage efficiency by adenovirus protease is site-dependent. J Biol Chem 271: 32511–32514 [CrossRef] [PubMed].
    [Google Scholar]
  9. Du E. , Tikoo S.K. . ( 2010;). Efficient replication and generation of recombinant bovine adenovirus-3 in nonbovine cotton rat lung cells expressing I-SceI endonuclease. J Gene Med 12: 840–847 [CrossRef] [PubMed].
    [Google Scholar]
  10. Gao M. , Matusick-Kumar L. , Hurlburt W. , DiTusa S.F. , Newcomb W.W. , Brown J.C. , McCann P.J. III , Deckman I. , Colonno R.J. . ( 1994;). The protease of herpes simplex virus type 1 is essential for functional capsid formation and viral growth. J Virol 68: 3702–3712 [PubMed].
    [Google Scholar]
  11. Greber U.F. , Webster P. , Weber J. , Helenius A. . ( 1996;). The role of the adenovirus protease on virus entry into cells. EMBO J 15: 1766–1777 [PubMed].
    [Google Scholar]
  12. Hong S.S. , Szolajska E. , Schoehn G. , Franqueville L. , Myhre S. , Lindholm L. , Ruigrok R.W.H. , Boulanger P. , Chroboczek J. . ( 2005;). The 100K-chaperone protein from adenovirus serotype 2 (Subgroup C) assists in trimerization and nuclear localization of hexons from subgroups C and B adenoviruses. J Mol Biol 352: 125–138 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kohl N.E. , Emini E.A. , Schleif W.A. , Davis L.J. , Heimbach J.C. , Dixon R.A. , Scolnick E.M. , Sigal I.S. . ( 1988;). Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A 85: 4686–4690 [CrossRef] [PubMed].
    [Google Scholar]
  14. Köhler M. , Görlich D. , Hartmann E. , Franke J. . ( 2001;). Adenoviral E1A protein nuclear import is preferentially mediated by importin alpha3 in vitro. Virology 289: 186–191 [CrossRef] [PubMed].
    [Google Scholar]
  15. Koyuncu O.O. , Dobner T. . ( 2009;). Arginine methylation of human adenovirus type 5 L4 100-kilodalton protein is required for efficient virus production. J Virol 83: 4778–4790 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kulshreshtha V. , Tikoo S.K. . ( 2008;). Interaction of bovine adenovirus-3 33K protein with other viral proteins. Virology 381: 29–35 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kulshreshtha V. , Babiuk L.A. , Tikoo S.K. . ( 2004;). Role of bovine adenovirus-3 33K protein in viral replication. Virology 323: 59–69 [CrossRef] [PubMed].
    [Google Scholar]
  18. Mangel W.F. , McGrath W.J. , Toledo D.L. , Anderson C.W. . ( 1993;). Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature 361: 274–275 [CrossRef] [PubMed].
    [Google Scholar]
  19. Mangel W.F. , Baniecki M.L. , McGrath W.J. . ( 2003;). Specific interactions of the adenovirus proteinase with the viral DNA, an 11-amino-acid viral peptide, and the cellular protein actin. Cell Mol Life Sci 60: 2347–2355 [CrossRef] [PubMed].
    [Google Scholar]
  20. Patel A.K. , Olson D. , Tikoo S.K. . ( 2010;). Proteomic analysis of bovine nucleolus. Genomics Proteomics Bioinformatics 8: 145–158 [CrossRef] [PubMed].
    [Google Scholar]
  21. Paterson C.P. . ( 2010;). Molecular characterization of 52K protein of bovine adenovirus type 3 PhD thesis University of Saskatchewan: Saskatoon, Canada;.
    [Google Scholar]
  22. Paterson C.P. , Ayalew L.E. , Tikoo S.K. . ( 2012;). Mapping of nuclear import signal and importin α3 binding regions of 52K protein of bovine adenovirus-3. Virology 432: 63–72 [CrossRef] [PubMed].
    [Google Scholar]
  23. Pérez-Berná A.J. , Mangel W.F. , McGrath W.J. , Graziano V. , Flint J. , San Martín C. . ( 2014;). Processing of the l1 52/55k protein by the adenovirus protease: a new substrate and new insights into virion maturation. J Virol 88: 1513–1524 [CrossRef] [PubMed].
    [Google Scholar]
  24. Reddy P.S. , Idamakanti N. , Song J.Y. , Lee J.B. , Hyun B.H. , Park J.H. , Cha S.H. , Bae Y.T. , Tikoo S.K. , Babiuk L.A. . ( 1998;). Nucleotide sequence and transcription map of porcine adenovirus type 3. Virology 251: 414–426 [CrossRef] [PubMed].
    [Google Scholar]
  25. Ruzindana-Umunyana A. , Sircar S. , Weber J.M. . ( 2000;). The effect of mutant peptide cofactors on adenovirus protease activity and virus infection. Virology 270: 173–179 [CrossRef] [PubMed].
    [Google Scholar]
  26. Ruzindana-Umunyana A. , Imbeault L. , Weber J.M. . ( 2002;). Substrate specificity of adenovirus protease. Virus Res 89: 41–52 [CrossRef] [PubMed].
    [Google Scholar]
  27. Stracker T.H. , Lee D.V. , Carson C.T. , Araujo F.D. , Ornelles D.A. , Weitzman M.D. . ( 2005;). Serotype-specific reorganization of the Mre11 complex by adenoviral E4orf3 proteins. J Virol 79: 6664–6673 [CrossRef] [PubMed].
    [Google Scholar]
  28. Weber J. . ( 1976;). Genetic analysis of adenovirus type 2 III. Temperature sensitivity of processing viral proteins. J Virol 17: 462–471 [PubMed].
    [Google Scholar]
  29. Weber J. . ( 1995;). Adenovirus endopeptidase and its role in virus infection. . In The Molecular Repertoire of Adenoviruses I, pp. 227–235. Edited by Doerfler W. , Böhm P. . Berlin/Heidelberg: Springer-Verlag;.[CrossRef]
    [Google Scholar]
  30. Wodrich H. , Guan T. , Cingolani G. , Von Seggern D. , Nemerow G. , Gerace L. . ( 2003;). Switch from capsid protein import to adenovirus assembly by cleavage of nuclear transport signals. EMBO J 22: 6245–6255 [CrossRef] [PubMed].
    [Google Scholar]
  31. Wu Q. , Chen Y. , Kulshreshtha V. , Tikoo S.K. . ( 2004;). Characterization and nuclear localization of the fiber protein encoded by the late region 7 of bovine adenovirus type 3. Arch Virol 149: 1783–1799 [CrossRef] [PubMed].
    [Google Scholar]
  32. Xi Q. , Cuesta R. , Schneider R.J. . ( 2004;). Tethering of eIF4G to adenoviral mRNAs by viral 100k protein drives ribosome shunting. Genes Dev 18: 1997–2009 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000205
Loading
/content/journal/jgv/10.1099/vir.0.000205
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error