1887

Abstract

The role of cytomegalovirus (CMV)-specific polyfunctional CD8 T-cells and that of antibodies neutralizing virus epithelial infection (AbNEI) in the control of CMV DNAemia were investigated in 39 CMV-seropositive allogeneic stem-cell transplant (Allo-SCT) recipients with ( = 24) or without ( = 15) CMV DNAemia. AbNEI levels were monitored prospectively by means of a neutralization assay employing retinal epithelial cells (ARPE-19) and the recombinant CMV strain BADrUL131-Y4. Quantification of CMV-specific polyfunctional CD8 T-cells (expressing two or three of the following markers: IFN-γγ, TNF-α and CD107a) in whole blood was performed by flow cytometry for intracellular cytokine staining. We found no differences in the dynamic pattern of AbNEI in patients with or without subsequent CMV DNAemia. Baseline and peak AbNEI titres were not predictive of the dynamics of CMV replication within episodes. No correlation was found between CMV DNA loads and AbNEI levels during episodes of CMV DNAemia (ρ = 0.09; 95 % confidence interval − 0.52 to 0.64;  = 0.78). The detection of pp65/IE-1 CMV-specific polyfunctional CD8 T-cells was associated with low-level virus replication within subsequent episodes of CMV DNAemia. Interestingly, the presence of AbNEI titres (inverse) >4.7 log was predictive of the occurrence of CMV DNAemia (sensitivity, 83 %; specificity, 80 %). Our findings provide an insight to the role of humoral and cellular immunity in the control of CMV infection in an Allo-SCT setting.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000203
2015-09-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/9/2822.html?itemId=/content/journal/jgv/10.1099/vir.0.000203&mimeType=html&fmt=ahah

References

  1. Boeckh M., Murphy W.J., Peggs K.S.. ( 2015;). Recent advances in cytomegalovirus: an update on pharmacologic and cellular therapies. Biol Blood Marrow Transplant 21: 24–29 [CrossRef] [PubMed].
    [Google Scholar]
  2. Chemaly R.F., Ullmann A.J., Stoelben S., Richard M.P., Bornhäuser M., Groth C., Einsele H., Silverman M., Mullane K.M., other authors. ( 2014;). Letermovir for cytomegalovirus prophylaxis in hematopoietic-cell transplantation. N Engl J Med 370: 1781–1789 [CrossRef] [PubMed].
    [Google Scholar]
  3. Clari M.A., Bravo D., Costa E., Muñoz-Cobo B., Solano C., Remigia M.J., Giménez E., Benmarzouk-Hidalgo O.J., Pérez-Romero P., Navarro D.. ( 2013;). Comparison of the new Abbott Real Time CMV assay and the Abbott CMV PCR Kit for the quantitation of plasma cytomegalovirus DNAemia. Diagn Microbiol Infect Dis 75: 207–209 [CrossRef] [PubMed].
    [Google Scholar]
  4. Cui X., Meza B.P., Adler S.P., McVoy M.A.. ( 2008;). Cytomegalovirus vaccines fail to induce epithelial entry neutralizing antibodies comparable to natural infection. Vaccine 26: 5760–5766 [CrossRef] [PubMed].
    [Google Scholar]
  5. Forster M.R., Trgovcich J., Zimmerman P., Chang A., Miller C., Klenerman P., Cook C.H.. ( 2010;). Antiviral prevention of sepsis induced cytomegalovirus reactivation in immunocompetent mice. Antiviral Res 85: 496–503 [CrossRef] [PubMed].
    [Google Scholar]
  6. Gerna G., Percivalle E., Lilleri D., Lozza L., Fornara C., Hahn G., Baldanti F., Revello M.G.. ( 2005;). Dendritic-cell infection by human cytomegalovirus is restricted to strains carrying functional UL131-128 genes and mediates efficient viral antigen presentation to CD8+T cells. J Gen Virol 86: 275–284 [CrossRef] [PubMed].
    [Google Scholar]
  7. Giménez E., Muñoz-Cobo B., Solano C., Amat P., Navarro D., Tang Y.-W.. ( 2014;). Early kinetics of plasma cytomegalovirus DNA load in allogeneic stem cell transplant recipients in the era of highly sensitive real-time PCR assays: does it have any clinical value?. J Clin Microbiol 52: 654–656 [CrossRef] [PubMed].
    [Google Scholar]
  8. Gimeno C., Solano C., Latorre J.C., Hernández-Boluda J.C., Clari M.A., Remigia M.J., Furió S., Calabuig M., Tormo N., Navarro D.. ( 2008;). Quantification of DNA in plasma by an automated real-time PCR assay (cytomegalovirus PCR kit) for surveillance of active cytomegalovirus infection and guidance of preemptive therapy for allogeneic hematopoietic stem cell transplant recipients. J Clin Microbiol 46: 3311–3318 [CrossRef] [PubMed].
    [Google Scholar]
  9. Guglielmo B.J., Wong-Beringer A., Linker C.A.. ( 1994;). Immune globulin therapy in allogeneic bone marrow transplant: a critical review. Bone Marrow Transplant 13: 499–510 [PubMed].
    [Google Scholar]
  10. Hahn G., Jarosch M., Wang J.B., Berbes C., McVoy M.A.. ( 2003;). Tn7-mediated introduction of DNA sequences into bacmid-cloned cytomegalovirus genomes for rapid recombinant virus construction. J Virol Methods 107: 185–194 [CrossRef] [PubMed].
    [Google Scholar]
  11. Hahn G., Revello M.G., Patrone M., Percivalle E., Campanini G., Sarasini A., Wagner M., Gallina A., Milanesi G., other authors. ( 2004;). Human cytomegalovirus UL131-128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J Virol 78: 10023–10033 [CrossRef] [PubMed].
    [Google Scholar]
  12. Harari A., Dutoit V., Cellerai C., Bart P.A., Du Pasquier R.A., Pantaleo G.. ( 2006;). Functional signatures of protective antiviral T-cell immunity in human virus infections. Immunol Rev 211: 236–254 [CrossRef] [PubMed].
    [Google Scholar]
  13. Klenovsek K., Weisel F., Schneider A., Appelt U., Jonjic S., Messerle M., Bradel-Tretheway B., Winkler T.H., Mach M.. ( 2007;). Protection from CMV infection in immunodeficient hosts by adoptive transfer of memory B cells. Blood 110: 3472–3479 [CrossRef] [PubMed].
    [Google Scholar]
  14. Król L., Stuchlý J., Hubáček P., Keslová P., Sedláček P., Starý J., Hrušák O., Kalina T.. ( 2011;). Signature profiles of CMV-specific T-cells in patients with CMV reactivation after hematopoietic SCT. Bone Marrow Transplant 46: 1089–1098 [CrossRef] [PubMed].
    [Google Scholar]
  15. Lacey S.F., La Rosa C., Zhou W., Sharma M.C., Martinez J., Krishnan A., Gallez-Hawkins G., Thao L., Longmate J., other authors. ( 2006;). Functional comparison of T cells recognizing cytomegalovirus pp65 and intermediate-early antigen polypeptides in hematopoietic stem-cell transplant and solid organ transplant recipients. J Infect Dis 194: 1410–1421 [CrossRef] [PubMed].
    [Google Scholar]
  16. Lilleri D., Fornara C., Chiesa A., Caldera D., Alessandrino E.P., Gerna G.. ( 2008;). Human cytomegalovirus-specific CD4+ and CD8+T-cell reconstitution in adult allogeneic hematopoietic stem cell transplant recipients and immune control of viral infection. Haematologica 93: 248–256 [CrossRef] [PubMed].
    [Google Scholar]
  17. Lilleri D., Kabanova A., Lanzavecchia A., Gerna G.. ( 2012;). Antibodies against neutralization epitopes of human cytomegalovirus gH/gL/pUL128-130-131 complex and virus spreading may correlate with virus control in vivo. J Clin Immunol 32: 1324–1331 [CrossRef] [PubMed].
    [Google Scholar]
  18. Lilleri D., Kabanova A., Revello M.G., Percivalle E., Sarasini A., Genini E., Sallusto F., Lanzavecchia A., Corti D., Gerna G.. ( 2013;). Fetal human cytomegalovirus transmission correlates with delayed maternal antibodies to gH/gL/pUL128-130-131 complex during primary infection. PLoS One 8: e59863 [CrossRef] [PubMed].
    [Google Scholar]
  19. Macagno A., Bernasconi N.L., Vanzetta F., Dander E., Sarasini A., Revello M.G., Gerna G., Sallusto F., Lanzavecchia A.. ( 2010;). Isolation of human monoclonal antibodies that potently neutralize human cytomegalovirus infection by targeting different epitopes on the gH/gL/UL128-131A complex. J Virol 84: 1005–1013 [CrossRef] [PubMed].
    [Google Scholar]
  20. Maidji E., McDonagh S., Genbacev O., Tabata T., Pereira L.. ( 2006;). Maternal antibodies enhance or prevent cytomegalovirus infection in the placenta by neonatal Fc receptor-mediated transcytosis. Am J Pathol 168: 1210–1226 [CrossRef] [PubMed].
    [Google Scholar]
  21. Muñoz I., Gutiérrez A., Gimeno C., Farga A., Alberola J., Solano C., Prósper F., García-Conde J., Navarro D.. ( 2001;). Lack of association between the kinetics of human cytomegalovirus (HCMV) glycoprotein B (gB)-specific and neutralizing serum antibodies and development or recovery from HCMV active infection in patients undergoing allogeneic stem cell transplant. J Med Virol 65: 77–84 [CrossRef] [PubMed].
    [Google Scholar]
  22. Muñoz-Cobo B., Solano C., Benet I., Costa E., Remigia M.J., de la Cámara R., Nieto J., López J., Amat P., other authors. ( 2012;). Functional profile of cytomegalovirus (CMV)-specific CD8+T cells and kinetics of NKG2C+ NK cells associated with the resolution of CMV DNAemia in allogeneic stem cell transplant recipients. J Med Virol 84: 259–267 [CrossRef] [PubMed].
    [Google Scholar]
  23. Reddehase M.J., Balthesen M., Rapp M., Jonjić S., Pavić I., Koszinowski U.H.. ( 1994;). The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. J Exp Med 179: 185–193 [CrossRef] [PubMed].
    [Google Scholar]
  24. Ryckman B.J., Chase M.C., Johnson D.C.. ( 2008a;). HCMV gH/gL/UL128-131 interferes with virus entry into epithelial cells: evidence for cell type-specific receptors. Proc Natl Acad Sci U S A 105: 14118–14123 [CrossRef] [PubMed].
    [Google Scholar]
  25. Ryckman B.J., Rainish B.L., Chase M.C., Borton J.A., Nelson J.A., Jarvis M.A., Johnson D.C.. ( 2008b;). Characterization of the human cytomegalovirus gH/gL/UL128-131 complex that mediates entry into epithelial and endothelial cells. J Virol 82: 60–70 [CrossRef] [PubMed].
    [Google Scholar]
  26. Schoppel K., Schmidt C., Einsele H., Hebart H., Mach M.. ( 1998;). Kinetics of the antibody response against human cytomegalovirus-specific proteins in allogeneic bone marrow transplant recipients. J Infect Dis 178: 1233–1243 [CrossRef] [PubMed].
    [Google Scholar]
  27. Solano C., Navarro D.. ( 2010;). Clinical virology of cytomegalovirus infection following hematopoietic transplantation. Future Virol 5: 111–124 [CrossRef]
    [Google Scholar]
  28. Solano C., Benet I., Clari M.A., Nieto J., de la Cámara R., López J., Hernández-Boluda J.C., Remigia M.J., Jarque I., other authors. ( 2008;). Enumeration of cytomegalovirus-specific interferon(CD8+ and CD4+T cells early after allogeneic stem cell transplantation may identify patients at risk of active cytomegalovirus infection. Haematologica 93: 1434–1436 [CrossRef] [PubMed].
    [Google Scholar]
  29. Tormo N., Solano C., Benet I., Clari M.A., Nieto J., de la Cámara R., López J., López-Aldeguer N., Hernández-Boluda J.C., other authors. ( 2010a;). Lack of prompt expansion of cytomegalovirus pp65 and IE-1-specific IFN(CD8+ and CD4+T cells is associated with rising levels of pp65 antigenemia and DNAemia during pre-emptive therapy in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transplant 45: 543–549 [CrossRef] [PubMed].
    [Google Scholar]
  30. Tormo N., Solano C., Benet I., Nieto J., de la Cámara R., Garcia-Noblejas A., Clari M.A., Chilet M., López J., other authors. ( 2010b;). Kinetics of cytomegalovirus (CMV) pp65 and IE-1-specific IFN(CD8+ and CD4+T cells during episodes of viral DNAemia in allogeneic stem cell transplant recipients: potential implications for the management of active CMV infection. J Med Virol 82: 1208–1215 [CrossRef] [PubMed].
    [Google Scholar]
  31. Tormo N., Solano C., Benet I., Nieto J., de la Cámara R., López J., Garcia-Noblejas A., Muñoz-Cobo B., Costa E., other authors. ( 2011;). Reconstitution of CMV pp65 and IE-1-specific IFN-γ CD8+ and CD4+T-cell responses affording protection from CMV DNAemia following allogeneic hematopoietic SCT. Bone Marrow Transplant 46: 1437–1443 [CrossRef] [PubMed].
    [Google Scholar]
  32. Vanarsdall A.L., Ryckman B.J., Chase M.C., Johnson D.C.. ( 2008;). Human cytomegalovirus glycoproteins gB and gH/gL mediate epithelial cell-cell fusion when expressed either in cis or in trans. J Virol 82: 11837–11850 [CrossRef] [PubMed].
    [Google Scholar]
  33. Volpi A., Pica F., Gentile G., Capobianchi A., Fraschetti M., Martino P.. ( 1999;). Neutralizing antibody response against human cytomegalovirus in allogeneic bone marrow-transplant recipients. J Infect Dis 180: 1747–1748 [CrossRef] [PubMed].
    [Google Scholar]
  34. Wang D., Shenk T.. ( 2005a;). Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc Natl Acad Sci U S A 102: 18153–18158 [CrossRef] [PubMed].
    [Google Scholar]
  35. Wang D., Shenk T.. ( 2005b;). Human cytomegalovirus UL131 open reading frame is required for epithelial cell tropism. J Virol 79: 10330–10338 [CrossRef] [PubMed].
    [Google Scholar]
  36. Yamazaki R., Tanaka Y., Nakasone H., Sato M., Terasako-Saito K., Sakamoto K., Akahoshi Y., Nakano H., Ugai T., other authors. ( 2014;). Allotype analysis to determine the origin of cytomegalovirus immunoglobulin-G after allogeneic stem cell transplantation. Transpl Infect Dis 16: 904–913 [CrossRef] [PubMed].
    [Google Scholar]
  37. Zhou W., Longmate J., Lacey S.F., Palmer J.M., Gallez-Hawkins G., Thao L., Spielberger R., Nakamura R., Forman S.J., other authors. ( 2009;). Impact of donor CMV status on viral infection and reconstitution of multifunction CMV-specific T cells in CMV-positive transplant recipients. Blood 113: 6465–6476 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000203
Loading
/content/journal/jgv/10.1099/vir.0.000203
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error