1887

Abstract

Live-attenuated influenza vaccines (LAIVs) are now available for the prevention of influenza, with LAIV strains generally derived from serial passage in cultures or by reverse genetics (RG). The receptor-binding domain (RBD) in haemagglutinin (HA) of influenza virus is responsible for viral binding to the avian-type 2,3-α-linked or human-type 2,6-α-linked sialic acid receptor; however, the virulence determinants in the RBD of H5N1 virus remain largely unknown. In the present study, serial passage of H5N1 virus A/Vietnam/1194/2004 in Madin–Darby canine kidney cells resulted in the generation of adapted variants with large-plaque morphology, and genomic sequencing of selected variants revealed two specific amino acid substitutions (K193E and G225E) in the RBD. RG was used to generate H5N1 viruses containing either single or double substitutions in HA. The RG virus containing K193E and G225E mutations (rVN-K193E/G225E) demonstrated large-plaque morphology, enhanced replication and genetic stability after serial passage, without changing the receptor-binding preference. Importantly, virulence assessment demonstrated that rVN-K193E/G225E was significantly attenuated in mice. Microneutralization and haemagglutination inhibition assays demonstrated that immunization with rVN-K193E/G225E efficiently induced a robust antibody response against WT H5N1 virus in mice. Taken together, our experiments demonstrated that K193E and G225E mutations synergistically attenuated H5N1 virus without enhancing the receptor-binding avidity, and that the RG virus rVN-K193E/G225E represents a potential H5N1 LAIV strategy that deserves further development. These findings identify the RBD as a novel attenuation target for live vaccine development and highlight the complexity of RBD interactions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000193
2015-09-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/9/2522.html?itemId=/content/journal/jgv/10.1099/vir.0.000193&mimeType=html&fmt=ahah

References

  1. Chen Z., Kim L., Subbarao K., Jin H. 2012; The 2009 pandemic H1N1 virus induces anti-neuraminidase (NA) antibodies that cross-react with the NA of H5N1 viruses in ferrets. Vaccine 30:2516–2522 [View Article][PubMed]
    [Google Scholar]
  2. Conenello G.M., Zamarin D., Perrone L.A., Tumpey T., Palese P. 2007; A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog 3:e141 [View Article][PubMed]
    [Google Scholar]
  3. Contreras-Moreira B., Bates P.A. 2002; Domain fishing: a first step in protein comparative modelling. Bioinformatics 18:1141–1142 [View Article][PubMed]
    [Google Scholar]
  4. Dinh D.T., Le M.T.Q., Vuong C.D., Hasebe F., Morita K. 2011; An updated loop-mediated isothermal amplification method for rapid diagnosis of H5N1 avian influenza viruses. Trop Med Health 39:3–7 [View Article][PubMed]
    [Google Scholar]
  5. Ekiert D., Bhabha G., Elsliger M. 2009; Antibody recognition of a highly conserved influenza virus epitope. Science 1857:246–251 [CrossRef]
    [Google Scholar]
  6. Gambaryan A.S., Tuzikov A.B., Piskarev V.E., Yamnikova S.S., Lvov D.K., Robertson J.S., Bovin N.V., Matrosovich M.N. 1997; Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6′-sialyl(N-acetyllactosamine). Virology 232:345–350 [View Article][PubMed]
    [Google Scholar]
  7. Garten R.J., Davis C.T., Russell C.A., Shu B., Lindstrom S., Balish A., Sessions W.M., Xu X., Skepner E., other authors. 2009; Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325:197–201 [View Article][PubMed]
    [Google Scholar]
  8. Gulati U., Wu W., Gulati S., Kumari K., Waner J.L., Air G.M. 2005; Mismatched hemagglutinin and neuraminidase specificities in recent human H3N2 influenza viruses. Virology 339:12–20 [View Article][PubMed]
    [Google Scholar]
  9. Heneberg D. 1959; [Epidemiological review of pandemic Asiatic influenza in 1957]. Vojnosanit Pregl 16:624–632[PubMed] (in Serbian).
    [Google Scholar]
  10. Herfst S., Schrauwen E.J.A., Linster M., Chutinimitkul S., de Wit E., Munster V.J., Sorrell E.M., Bestebroer T.M., Burke D.F., other authors. 2012; Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336:1534–1541 [View Article][PubMed]
    [Google Scholar]
  11. Hoffmann E., Stech J., Guan Y., Webster R.G., Perez D.R. 2001; Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146:2275–2289 [View Article][PubMed]
    [Google Scholar]
  12. Hu W., Zhang H., Han Q., Li L., Chen Y., Xia N., Chen Z., Shu Y., Xu K., Sun B. 2015; A Vero-cell-adapted vaccine donor strain of influenza A virus generated by serial passages. Vaccine 33:374–381 [View Article][PubMed]
    [Google Scholar]
  13. Imai M., Kawaoka Y. 2012; The role of receptor binding specificity in interspecies transmission of influenza viruses. Curr Opin Virol 2:160–167 [View Article][PubMed]
    [Google Scholar]
  14. Kiso M., Mitamura K., Sakai-Tagawa Y., Shiraishi K., Kawakami C., Kimura K., Hayden F.G., Sugaya N., Kawaoka Y. 2004; Resistant influenza A viruses in children treated with oseltamivir: descriptive study. Lancet 364:759–765 [View Article][PubMed]
    [Google Scholar]
  15. Koel B.F., Burke D.F., Bestebroer T.M., van der Vliet S., Zondag G.C.M., Vervaet G., Skepner E., Lewis N.S., Spronken M.I.J., other authors. 2013; Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science 342:976–979 [CrossRef]
    [Google Scholar]
  16. Leroux-Roels I., Borkowski A., Vanwolleghem T., Dramé M., Clement F., Hons E., Devaster J.M., Leroux-Roels G. 2007; Antigen sparing and cross-reactive immunity with an adjuvanted rH5N1 prototype pandemic influenza vaccine: a randomised controlled trial. Lancet 370:580–589 [View Article][PubMed]
    [Google Scholar]
  17. Li J., Li Y., Hu Y., Chang G., Sun W., Yang Y., Kang X., Wu X., Zhu Q. 2011; PB1-mediated virulence attenuation of H5N1 influenza virus in mice is associated with PB2. J Gen Virol 92:1435–1444 [View Article][PubMed]
    [Google Scholar]
  18. Maines T.R., Chen L.-M., Van Hoeven N., Tumpey T.M., Blixt O., Belser J.A., Gustin K.M., Pearce M.B., Pappas C., other authors. 2011; Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses. Virology 413:139–147 [View Article][PubMed]
    [Google Scholar]
  19. Matrosovich M., Tuzikov A., Bovin N., Gambaryan A., Klimov A., Castrucci M.R., Donatelli I., Kawaoka Y. 2000; Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol 74:8502–8512 [View Article][PubMed]
    [Google Scholar]
  20. Mayrhofer J., Coulibaly S., Hessel A., Holzer G.W., Schwendinger M., Brühl P., Gerencer M., Crowe B.A., Shuo S., other authors. 2009; Nonreplicating vaccinia virus vectors expressing the H5 influenza virus hemagglutinin produced in modified Vero cells induce robust protection. J Virol 83:5192–5203 [View Article][PubMed]
    [Google Scholar]
  21. Muench H., Reed L.J. 1938; A simple method of estimating fifty per cent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  22. Murakami S., Horimoto T., Mai Q., Nidom C.A., Chen H., Muramoto Y., Yamada S., Iwasa A., Iwatsuki-Horimoto K., other authors. 2008; Growth determinants for H5N1 influenza vaccine seed viruses in MDCK cells. J Virol 82:10502–10509 [View Article][PubMed]
    [Google Scholar]
  23. Nobusawa E., Aoyama T., Kato H., Suzuki Y., Tateno Y., Nakajima K. 1991; Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology 182:475–485 [View Article][PubMed]
    [Google Scholar]
  24. Pappas C., Viswanathan K., Chandrasekaran A., Raman R., Katz J.M., Sasisekharan R., Tumpey T.M. 2010; Receptor specificity and transmission of H2N2 subtype viruses isolated from the pandemic of 1957. PLoS One 5:e11158 [View Article][PubMed]
    [Google Scholar]
  25. Prabakaran M., Madhan S., Prabhu N., Qiang J., Kwang J. 2010; Gastrointestinal delivery of baculovirus displaying influenza virus hemagglutinin protects mice against heterologous H5N1 infection. J Virol 84:3201–3209 [View Article][PubMed]
    [Google Scholar]
  26. Rogers G.N., Paulson J.C. 1983; Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–373 [View Article][PubMed]
    [Google Scholar]
  27. Russell C.A., Fonville J.M., Brown A.E., Burke D.F., Smith D.L., James S.L., Herfst S., van Boheemen S., Linster M., other authors. 2012; The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host. Science 336:1541–1547 [View Article][PubMed]
    [Google Scholar]
  28. Shi Y., Wu Y., Zhang W., Qi J., Gao G.F. 2014; Enabling the ‘host jump’: structural determinants of receptor-binding specificity in influenza A viruses. Nat Rev Microbiol 12:822–831 [View Article][PubMed]
    [Google Scholar]
  29. Steel J., Lowen A.C., Pena L., Angel M., Solórzano A., Albrecht R., Perez D.R., García-Sastre A., Palese P. 2009; Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J Virol 83:1742–1753 [View Article][PubMed]
    [Google Scholar]
  30. Stevens J., Blixt O., Tumpey T.M., Taubenberger J.K., Paulson J.C., Wilson I.A. 2006; Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312:404–410 [View Article][PubMed]
    [Google Scholar]
  31. Suguitan A.L. Jr, McAuliffe J., Mills K.L., Jin H., Duke G., Lu B., Luke C.J., Murphy B., Swayne D.E., other authors. 2006; Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets. PLoS Med 3:e360 [View Article][PubMed]
    [Google Scholar]
  32. Taubenberger J.K., Morens D.M. 2006; 1918 Influenza: the mother of all pandemics. Emerg Infect Dis 12:15–22 [View Article][PubMed]
    [Google Scholar]
  33. Tharakaraman K., Raman R., Viswanathan K., Stebbins N.W., Jayaraman A., Krishnan A., Sasisekharan V., Sasisekharan R. 2013; Structural determinants for naturally evolving H5N1 hemagglutinin to switch its receptor specificity. Cell 153:1475–1485 [View Article][PubMed]
    [Google Scholar]
  34. Tran-To Su C., Ouyang X., Zheng J., Kwoh C.-K. 2013; Structural analysis of the novel influenza A (H7N9) viral neuraminidase interactions with current approved neuraminidase inhibitors Oseltamivir, Zanamivir, and Peramivir in the presence of mutation R289K. BMC Bioinformatics 14:(Suppl 16)S7 [View Article][PubMed]
    [Google Scholar]
  35. Wang W., Lu B., Zhou H., Suguitan A.L. Jr, Cheng X., Subbarao K., Kemble G., Jin H. 2010; Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. J Virol 84:6570–6577 [View Article][PubMed]
    [Google Scholar]
  36. Watanabe T., Watanabe S., Kim J.H., Hatta M., Kawaoka Y. 2008; Novel approach to the development of effective H5N1 influenza A virus vaccines: use of M2 cytoplasmic tail mutants. J Virol 82:2486–2492 [View Article][PubMed]
    [Google Scholar]
  37. Watanabe Y., Ibrahim M.S., Ellakany H.F., Kawashita N., Mizuike R., Hiramatsu H., Sriwilaijaroen N., Takagi T., Suzuki Y., Ikuta K. 2011; Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt. PLoS Pathog 7:e1002068 [View Article][PubMed]
    [Google Scholar]
  38. WHO 2015 Cumulative number of confirmed human cases for avian influenza A(H5N1) reported to WHO, 2003-2015 http://www.who.int/influenza/human_animal_interface/EN_GIP_20150501CumulativeNumberH5N1cases.pdf
  39. Xu R., McBride R., Nycholat C.M., Paulson J.C., Wilson I.A. 2012; Structural characterization of the hemagglutinin receptor specificity from the 2009 H1N1 influenza pandemic. J Virol 86:982–990 [View Article][PubMed]
    [Google Scholar]
  40. Zhang W., Shi Y., Qi J., Gao F., Li Q., Fan Z., Yan J., Gao G.F. 2013; Molecular basis of the receptor binding specificity switch of the hemagglutinins from both the 1918 and 2009 pandemic influenza A viruses by a D225G substitution. J Virol 87:5949–5958 [View Article][PubMed]
    [Google Scholar]
  41. Zheng B., Chan K.-H., Zhang A.J.X., Zhou J., Chan C.C.S., Poon V.K.M., Zhang K., Leung V.H.C., Jin D.-Y., other authors. 2010; D225G mutation in hemagglutinin of pandemic influenza H1N1(2009) virus enhances virulence in mice. Exp Biol Med (Maywood) 235:981–988 [View Article][PubMed]
    [Google Scholar]
  42. Zhou J.J., Tian J., Fang D.Y., Liang Y., Yan H.J., Zhou J.M., Gao H.L., Fu C.Y., Liu Y., other authors. 2011; Analysis of antigen epitopes and molecular pathogenic characteristics of the 2009 H1N1 pandemic influenza A virus in China. Acta Virol 55:195–202 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000193
Loading
/content/journal/jgv/10.1099/vir.0.000193
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error