1887

Abstract

Influenza A virus is a major pathogen of birds, swine and humans. Strains can jump between species in a process often requiring mutations and reassortment, resulting in outbreaks and, potentially, pandemics. H9N2 avian influenza is predominant in poultry across Asia and occasionally infects humans and swine. Pandemic H1N1 (H1N1pdm) is endemic in humans and swine and has a history of reassortment in pigs. Previous studies have shown the compatibility of H9N2 and H1N1pdm for reassortment in ferrets, a model for human infection and transmission. Here, the effects of ferret adaptation of H9 surface gene segments on the infectivity and transmission in at-risk natural hosts, specifically swine and quail, were analysed. Reassortant H9N1 and H9N2 viruses, carrying seven or six gene segments from H1N1pdm, showed infectivity and transmissibility in swine, unlike the wholly avian H9N2 virus with ferret-adapted surface genes. In quail, only the reassortant H9N2 with the six internal gene segments from the H1N1pdm strain was able to infect and transmit, although less efficiently than the wholly avian H9N2 virus with ferret-adapted surface genes. These results highlight that ferret-adapted mutations on the haemagglutinin of H9 subtype virus do not restrict the ability of the virus to infect swine and quail, and that the ability to transmit in these species depends on the context of the whole virus. As such, this study emphasizes the threat that H9N2 reassortant viruses pose to humans and agricultural species and the importance of the genetic constellation of the virus to its ability to replicate and transmit in natural hosts of influenza.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000190
2015-09-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/9/2511.html?itemId=/content/journal/jgv/10.1099/vir.0.000190&mimeType=html&fmt=ahah

References

  1. Abolnik C., Bisschop S., Gerdes T., Olivier A., Horner R.. ( 2007;). Outbreaks of avian influenza H6N2 viruses in chickens arose by a reassortment of H6N8 and H9N2 ostrich viruses. Virus Genes 34: 37–45 [CrossRef] [PubMed].
    [Google Scholar]
  2. Alexander D.J.. ( 2000;). A review of avian influenza in different bird species. Vet Microbiol 74: 3–13 [CrossRef] [PubMed].
    [Google Scholar]
  3. Barbour E.K., Sagherian V.K., Sagherian N.K., Dankar S.K., Jaber L.S., Usayran N.N., Farran M.T.. ( 2006;). Avian influenza outbreak in poultry in the Lebanon and transmission to neighbouring farmers and swine. Vet Ital 42: 77–85 [PubMed].
    [Google Scholar]
  4. Blair P.J., Putnam S.D., Krueger W.S., Chum C., Wierzba T.F., Heil G.L., Yasuda C.Y., Williams M., Kasper M.R., other authors. ( 2013;). Evidence for avian H9N2 influenza virus infections among rural villagers in Cambodia. J Infect Public Health 6: 69–79 [CrossRef] [PubMed].
    [Google Scholar]
  5. Butt K.M., Smith G.J.D., Chen H., Zhang L.J., Leung Y.H.C., Xu K.M., Lim W., Webster R.G., Yuen K.Y., other authors. ( 2005;). Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. J Clin Microbiol 43: 5760–5767 [CrossRef] [PubMed].
    [Google Scholar]
  6. Butt A.M., Siddique S., Idrees M., Tong Y.. ( 2010;). Avian influenza A (H9N2): computational molecular analysis and phylogenetic characterization of viral surface proteins isolated between 1997 and 2009 from the human population. Virol J 7: 319 [CrossRef] [PubMed].
    [Google Scholar]
  7. Campbell P.J., Danzy S., Kyriakis C.S., Deymier M.J., Lowen A.C., Steel J.. ( 2014;). The M segment of the 2009 pandemic influenza virus confers increased neuraminidase activity, filamentous morphology, and efficient contact transmissibility to A/Puerto Rico/8/1934-based reassortant viruses. J Virol 88: 3802–3814 [CrossRef] [PubMed].
    [Google Scholar]
  8. Chen Y., Zheng Q., Yang K., Zeng F., Lau S.Y., Wu W.L., Huang S., Zhang J., Chen H., Xia N.. ( 2011;). Serological survey of antibodies to influenza A viruses in a group of people without a history of influenza vaccination. Clin Microbiol Infect 17: 1347–1349 [CrossRef] [PubMed].
    [Google Scholar]
  9. Chen H., Yuan H., Gao R., Zhang J., Wang D., Xiong Y., Fan G., Yang F., Li X., other authors. ( 2014;). Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet 383: 714–721 [CrossRef] [PubMed].
    [Google Scholar]
  10. Cheng V.C., Chan J.F., Wen X., Wu W.L., Que T.L., Chen H., Chan K.H., Yuen K.Y.. ( 2011;). Infection of immunocompromised patients by avian H9N2 influenza A virus. J Infect 62: 394–399 [CrossRef] [PubMed].
    [Google Scholar]
  11. Cong Y.L., Pu J., Liu Q.F., Wang S., Zhang G.Z., Zhang X.L., Fan W.X., Brown E.G., Liu J.H.. ( 2007;). Antigenic and genetic characterization of H9N2 swine influenza viruses in China. J Gen Virol 88: 2035–2041 [CrossRef] [PubMed].
    [Google Scholar]
  12. Davidson I., Fusaro A., Heidari A., Monne I., Cattoli G.. ( 2014;). Molecular evolution of H9N2 avian influenza viruses in Israel. Virus Genes 48: 457–463 [CrossRef] [PubMed].
    [Google Scholar]
  13. Fouchier R.A., Munster V., Wallensten A., Bestebroer T.M., Herfst S., Smith D., Rimmelzwaan G.F., Olsen B., Osterhaus A.D.. ( 2005;). Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79: 2814–2822 [CrossRef] [PubMed].
    [Google Scholar]
  14. Gamblin S.J., Skehel J.J.. ( 2010;). Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 285: 28403–28409 [CrossRef] [PubMed].
    [Google Scholar]
  15. Guan Y., Shortridge K.F., Krauss S., Webster R.G.. ( 1999;). Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong?. Proc Natl Acad Sci U S A 96: 9363–9367 [CrossRef] [PubMed].
    [Google Scholar]
  16. Guo Y.J., Krauss S., Senne D.A., Mo I.P., Lo K.S., Xiong X.P., Norwood M., Shortridge K.F., Webster R.G., Guan Y.. ( 2000;). Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology 267: 279–288 [CrossRef] [PubMed].
    [Google Scholar]
  17. Halbur P.G., Paul P.S., Frey M.L., Landgraf J., Eernisse K., Meng X.J., Lum M.A., Andrews J.J., Rathje J.A.. ( 1995;). Comparison of the pathogenicity of two US porcine reproductive and respiratory syndrome virus isolates with that of the Lelystad virus. Vet Pathol 32: 648–660 [CrossRef] [PubMed].
    [Google Scholar]
  18. He L., Wu Q., Jiang K., Duan Z., Liu J., Xu H., Cui Z., Gu M., Wang X., other authors. ( 2014;). Differences in transmissibility and pathogenicity of reassortants between H9N2 and 2009 pandemic H1N1 influenza A viruses from humans and swine. Arch Virol 159: 1743–1754 [CrossRef] [PubMed].
    [Google Scholar]
  19. Herfst S., Schrauwen E.J., Linster M., Chutinimitkul S., de Wit E., Munster V.J., Sorrell E.M., Bestebroer T.M., Burke D.F., other authors. ( 2012;). Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336: 1534–1541 [CrossRef] [PubMed].
    [Google Scholar]
  20. Howard W.A., Essen S.C., Strugnell B.W., Russell C., Barass L., Reid S.M., Brown I.H.. ( 2011;). Reassortant pandemic (H1N1) 2009 virus in pigs, United Kingdom. Emerg Infect Dis 17: 1049–1052 [CrossRef] [PubMed].
    [Google Scholar]
  21. Huang R., Wang A.R., Liu Z.H., Liang W., Li X.X., Tang Y.J., Miao Z.M., Chai T.J.. ( 2013;). Seroprevalence of avian influenza H9N2 among poultry workers in Shandong Province, China. Eur J Clin Microbiol Infect Dis 32: 1347–1351 [CrossRef] [PubMed].
    [Google Scholar]
  22. Imai M., Herfst S., Sorrell E.M., Schrauwen E.J., Linster M., De Graaf M., Fouchier R.A., Kawaoka Y.. ( 2013;). Transmission of influenza A/H5N1 viruses in mammals. Virus Res 178: 15–20 [CrossRef] [PubMed].
    [Google Scholar]
  23. Ito T., Couceiro J.N., Kelm S., Baum L.G., Krauss S., Castrucci M.R., Donatelli I., Kida H., Paulson J.C., other authors. ( 1998;). Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72: 7367–7373 [PubMed].
    [Google Scholar]
  24. Kimble B., Nieto G.R., Perez D.R.. ( 2010;). Characterization of influenza virus sialic acid receptors in minor poultry species. Virol J 7: 365 [CrossRef] [PubMed].
    [Google Scholar]
  25. Kimble J.B., Sorrell E., Shao H., Martin P.L., Perez D.R.. ( 2011;). Compatibility of H9N2 avian influenza surface genes and 2009 pandemic H1N1 internal genes for transmission in the ferret model. Proc Natl Acad Sci U S A 108: 12084–12088 [CrossRef] [PubMed].
    [Google Scholar]
  26. Kimble J.B., Angel M., Wan H., Sutton T.C., Finch C., Perez D.R.. ( 2014;). Alternative reassortment events leading to transmissible H9N1 influenza viruses in the ferret model. J Virol 88: 66–71 [CrossRef] [PubMed].
    [Google Scholar]
  27. Kitikoon P., Nilubol D., Erickson B.J., Janke B.H., Hoover T.C., Sornsen S.A., Thacker E.L.. ( 2006;). The immune response and maternal antibody interference to a heterologous H1N1 swine influenza virus infection following vaccination. Vet Immunol Immunopathol 112: 117–128 [CrossRef] [PubMed].
    [Google Scholar]
  28. Ku K.B., Park E.H., Yum J., Kim H.M., Kang Y.M., Kim J.C., Kim J.A., Kim H.S., Seo S.H.. ( 2014;). Transmissibility of novel H7N9 and H9N2 avian influenza viruses between chickens and ferrets. Virology 450–451: 316–323 [CrossRef] [PubMed].
    [Google Scholar]
  29. Lee D.H., Torchetti M.K., Winker K., Ip H.S., Song C.S., Swayne D.E.. ( 2015;). Intercontinental spread of Asian-origin H5N8 to North America through Beringia by migratory birds. J Virol 89: 6521–6524 [CrossRef] [PubMed].
    [Google Scholar]
  30. Li X., Shi J., Guo J., Deng G., Zhang Q., Wang J., He X., Wang K., Chen J., other authors. ( 2014;). Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 avian influenza viruses. PLoS Pathog 10: e1004508 [CrossRef] [PubMed].
    [Google Scholar]
  31. Lin Y.P., Shaw M., Gregory V., Cameron K., Lim W., Klimov A., Subbarao K., Guan Y., Krauss S., other authors. ( 2000;). Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci U S A 97: 9654–9658 [CrossRef] [PubMed].
    [Google Scholar]
  32. Liu Y., Lu E.J., Wang Y.L., Di B., Li T.G., Zhou Y., Yang L.L., Xu X.Y., Fu C.X., Wang M.. ( 2009;). [Avian influenza virus infection in people occupied in poultry fields in Guangzhou city]. Zhonghua Liu Xing Bing Xue Za Zhi 30: 1111–1113 (in Chinese)[PubMed].
    [Google Scholar]
  33. Liu D., Shi W., Shi Y., Wang D., Xiao H., Li W., Bi Y., Wu Y., Li X., other authors. ( 2013;). Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet 381: 1926–1932 [CrossRef] [PubMed].
    [Google Scholar]
  34. Ma W., Liu Q., Bawa B., Qiao C., Qi W., Shen H., Chen Y., Ma J., Li X., other authors. ( 2012;). The neuraminidase and matrix genes of the 2009 pandemic influenza H1N1 virus cooperate functionally to facilitate efficient replication and transmissibility in pigs. J Gen Virol 93: 1261–1268 [CrossRef] [PubMed].
    [Google Scholar]
  35. Makarova N.V., Ozaki H., Kida H., Webster R.G., Perez D.R.. ( 2003;). Replication and transmission of influenza viruses in Japanese quail. Virology 310: 8–15 [CrossRef] [PubMed].
    [Google Scholar]
  36. Naeem K., Ullah A., Manvell R.J., Alexander D.J.. ( 1999;). Avian influenza A subtype H9N2 in poultry in Pakistan. Vet Rec 145: 560 [CrossRef] [PubMed].
    [Google Scholar]
  37. Nili H., Asasi K.. ( 2003;). Avian influenza (H9N2) outbreak in Iran. Avian Dis 47: 828–831 [CrossRef] [PubMed].
    [Google Scholar]
  38. Okoye J., Eze D., Krueger W.S., Heil G.L., Friary J.A., Gray G.C.. ( 2013;). Serologic evidence of avian influenza virus infections among Nigerian agricultural workers. J Med Virol 85: 670–676 [CrossRef] [PubMed].
    [Google Scholar]
  39. Pasick J., Berhane Y., Joseph T., Bowes V., Hisanaga T., Handel K., Alexandersen S.. ( 2015;). Reassortant highly pathogenic influenza A H5N2 virus containing gene segments related to Eurasian H5N8 in British Columbia. Canada, 2014. Sci Rep 5: 9484 [CrossRef] [PubMed].
    [Google Scholar]
  40. Pawar S.D., Tandale B.V., Raut C.G., Parkhi S.S., Barde T.D., Gurav Y.K., Kode S.S., Mishra A.C.. ( 2012;). Avian influenza H9N2 seroprevalence among poultry workers in Pune, India, 2010. PLoS One 7: e36374 [CrossRef] [PubMed].
    [Google Scholar]
  41. Peiris M., Yuen K.Y., Leung C.W., Chan K.H., Ip P.L., Lai R.W., Orr W.K., Shortridge K.F.. ( 1999;). Human infection with influenza H9N2. Lancet 354: 916–917 [CrossRef] [PubMed].
    [Google Scholar]
  42. Perez D.R., Lim W., Seiler J.P., Yi G., Peiris M., Shortridge K.F., Webster R.G.. ( 2003a;). Role of quail in the interspecies transmission of H9 influenza A viruses: molecular changes on HA that correspond to adaptation from ducks to chickens. J Virol 77: 3148–3156 [CrossRef] [PubMed].
    [Google Scholar]
  43. Perez D.R., Webby R.J., Hoffmann E., Webster R.G.. ( 2003b;). Land-based birds as potential disseminators of avian mammalian reassortant influenza A viruses. Avian Dis 47: 1114–1117 [CrossRef] [PubMed].
    [Google Scholar]
  44. Qiao C., Liu Q., Bawa B., Shen H., Qi W., Chen Y., Mok C.K., García-Sastre A., Richt J.A., Ma W.. ( 2012;). Pathogenicity and transmissibility of reassortant H9 influenza viruses with genes from pandemic H1N1 virus. J Gen Virol 93: 2337–2345 [CrossRef] [PubMed].
    [Google Scholar]
  45. Reed L.J., Muench H.. ( 1938;). A simple method for estimating fifty per cent endpoints. Am J Hyg 27: 493–497.
    [Google Scholar]
  46. Rui-Hua Z., Hong-Yu C., Ming-Ju X., Kai L., Hua-Lan C., Cun-Lian W., Dong W., Cun-Xin L., Tong X.. ( 2011;). Molecular characterization and pathogenicity of swine influenza H9N2 subtype virus A/swine/HeBei/012/2008/(H9N2). Acta Virol 55: 219–226 [CrossRef] [PubMed].
    [Google Scholar]
  47. Sorrell E.M., Wan H., Araya Y., Song H., Perez D.R.. ( 2009;). Minimal molecular constraints for respiratory droplet transmission of an avian–human H9N2 influenza A virus. Proc Natl Acad Sci U S A 106: 7565–7570 [CrossRef] [PubMed].
    [Google Scholar]
  48. Sun Y., Pu J., Jiang Z., Guan T., Xia Y., Xu Q., Liu L., Ma B., Tian F., other authors. ( 2010;). Genotypic evolution and antigenic drift of H9N2 influenza viruses in China from 1994 to 2008. Vet Microbiol 146: 215–225 [CrossRef] [PubMed].
    [Google Scholar]
  49. Sun Y., Qin K., Wang J., Pu J., Tang Q., Hu Y., Bi Y., Zhao X., Yang H., other authors. ( 2011;). High genetic compatibility and increased pathogenicity of reassortants derived from avian H9N2 and pandemic H1N1/2009 influenza viruses. Proc Natl Acad Sci U S A 108: 4164–4169 [CrossRef] [PubMed].
    [Google Scholar]
  50. Sun Y., Tan Y., Wei K., Sun H., Shi Y., Pu J., Yang H., Gao G.F., Yin Y., other authors. ( 2013;). Amino acid 316 of hemagglutinin and the neuraminidase stalk length influence virulence of H9N2 influenza virus in chickens and mice. J Virol 87: 2963–2968 [CrossRef] [PubMed].
    [Google Scholar]
  51. Sutton T.C., Finch C., Shao H., Angel M., Chen H., Capua I., Cattoli G., Monne I., Perez D.R.. ( 2014;). Airborne transmission of highly pathogenic H7N1 influenza virus in ferrets. J Virol 88: 6623–6635 [CrossRef] [PubMed].
    [Google Scholar]
  52. Takahashi T., Suzuki T., Hidari K.I.P.J., Miyamoto D., Suzuki Y.. ( 2003;). A molecular mechanism for the low-pH stability of sialidase activity of influenza A virus N2 neuraminidases. FEBS Lett 543: 71–75 [CrossRef] [PubMed].
    [Google Scholar]
  53. Takahashi T., Song J., Suzuki T., Kawaoka Y.. ( 2013;). Mutations in NA that induced low pH-stability and enhanced the replication of pandemic (H1N1) 2009 influenza A virus at an early stage of the pandemic. PLoS One 8: e64439 [CrossRef] [PubMed].
    [Google Scholar]
  54. Thontiravong A., Kitikoon P., Wannaratana S., Tantilertcharoen R., Tuanudom R., Pakpinyo S., Sasipreeyajan J., Oraveerakul K., Amonsin A.. ( 2012a;). Quail as a potential mixing vessel for the generation of new reassortant influenza A viruses. Vet Microbiol 160: 305–313 [CrossRef] [PubMed].
    [Google Scholar]
  55. Thontiravong A., Wannaratana S., Tantilertcharoen R., Prakairungnamthip D., Tuanudom R., Sasipreeyajan J., Pakpinyo S., Amonsin A., Kitikoon P., Oraveerakul K.. ( 2012b;). Comparative study of pandemic (H1N1) 2009, swine H1N1, and avian H3N2 influenza viral infections in quails. J Vet Sci 13: 395–403 [CrossRef] [PubMed].
    [Google Scholar]
  56. Tong S., Li Y., Rivailler P., Conrardy C., Castillo D.A., Chen L.M., Recuenco S., Ellison J.A., Davis C.T., other authors. ( 2012;). A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A 109: 4269–4274 [CrossRef] [PubMed].
    [Google Scholar]
  57. Tong S., Zhu X., Li Y., Shi M., Zhang J., Bourgeois M., Yang H., Chen X., Recuenco S., other authors. ( 2013;). New world bats harbor diverse influenza A viruses. PLoS Pathog 9: e1003657 [CrossRef] [PubMed].
    [Google Scholar]
  58. Uyeki T.M., Chong Y.H., Katz J.M., Lim W., Ho Y.Y., Wang S.S., Tsang T.H., Au W.W., Chan S.C., other authors. ( 2002;). Lack of evidence for human-to-human transmission of avian influenza A (H9N2) viruses in Hong Kong, China 1999. Emerg Infect Dis 8: 154–159 [CrossRef] [PubMed].
    [Google Scholar]
  59. Uyeki T.M., Nguyen D.C., Rowe T., Lu X., Hu-Primmer J., Huynh L.P., Hang N.L., Katz J.M.. ( 2012;). Seroprevalence of antibodies to avian influenza A (H5) and A (H9) viruses among market poultry workers, Hanoi, Vietnam, 2001. PLoS One 7: e43948 [CrossRef] [PubMed].
    [Google Scholar]
  60. Vijaykrishna D., Poon L.L., Zhu H.C., Ma S.K., Li O.T., Cheung C.L., Smith G.J., Peiris J.S., Guan Y.. ( 2010;). Reassortment of pandemic H1N1/2009 influenza A virus in swine. Science 328: 1529 [CrossRef] [PubMed].
    [Google Scholar]
  61. Wan H., Perez D.R.. ( 2006;). Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses. Virology 346: 278–286 [CrossRef] [PubMed].
    [Google Scholar]
  62. Wan H., Sorrell E.M., Song H., Hossain M.J., Ramirez-Nieto G., Monne I., Stevens J., Cattoli G., Capua I., other authors. ( 2008;). Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. PLoS One 3: e2923 [CrossRef] [PubMed].
    [Google Scholar]
  63. Wang B., Chen Q., Chen Z.. ( 2012;). Complete genome sequence of an H9N2 avian influenza virus isolated from egret in Lake Dongting wetland. J Virol 86: 11939 [CrossRef] [PubMed].
    [Google Scholar]
  64. Webster R.G., Bean W.J., Gorman O.T., Chambers T.M., Kawaoka Y.. ( 1992;). Evolution and ecology of influenza A viruses. Microbiol Rev 56: 152–179 [PubMed].
    [Google Scholar]
  65. WHO ( 2002;). Identification of influenza isolates by haemagglutination. . In WHO Manual on Animal Influenza Diagnosis and Surveillance, pp. 28–36 Geneva: World Health Organization;.
    [Google Scholar]
  66. Wu S., Wu F., He J.. ( 2013;). Emerging risk of H7N9 influenza in China. Lancet 381: 1539–1540 [CrossRef] [PubMed].
    [Google Scholar]
  67. Wu D., Zou S., Bai T., Li J., Zhao X., Yang L., Liu H., Li X., Yang X., other authors. ( 2015;). Poultry farms as a source of avian influenza A (H7N9) virus reassortment and human infection. Sci Rep 5: 7630 [CrossRef] [PubMed].
    [Google Scholar]
  68. Xu X.J., Xu G.Y., Zhou H.B., Yu Z.J., Zhang A.D., Song Y.F., Jin M.L., Chen H.C.. ( 2008;). Evolutionary characterization of influenza virus A/duck/Hubei/W1/2004 (H9N2) isolated from central China. Virus Genes 36: 79–83 [CrossRef] [PubMed].
    [Google Scholar]
  69. Yen H.L., Liang C.H., Wu C.Y., Forrest H.L., Ferguson A., Choy K.T., Jones J., Wong D.D.Y., Cheung P.P.H., other authors. ( 2011;). Hemagglutinin–neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets. Proc Natl Acad Sci U S A 108: 14264–14269 [CrossRef] [PubMed].
    [Google Scholar]
  70. Yu H., Hua R.H., Wei T.C., Zhou Y.J., Tian Z.J., Li G.X., Liu T.Q., Tong G.Z.. ( 2008;). Isolation and genetic characterization of avian origin H9N2 influenza viruses from pigs in China. Vet Microbiol 131: 82–92 [CrossRef] [PubMed].
    [Google Scholar]
  71. Yu H., Zhou Y.J., Li G.X., Ma J.H., Yan L.P., Wang B., Yang F.R., Huang M., Tong G.Z.. ( 2011;). Genetic diversity of H9N2 influenza viruses from pigs in China: a potential threat to human health?. Vet Microbiol 149: 254–261 [CrossRef] [PubMed].
    [Google Scholar]
  72. Zhang K., Zhang Z., Yu Z., Li L., Cheng K., Wang T., Huang G., Yang S., Zhao Y., other authors. ( 2013;). Domestic cats and dogs are susceptible to H9N2 avian influenza virus. Virus Res 175: 52–57 [CrossRef] [PubMed].
    [Google Scholar]
  73. Zhou P., Zhu W., Gu H., Fu X., Wang L., Zheng Y., He S., Ke C., Wang H., other authors. ( 2014;). Avian influenza H9N2 seroprevalence among swine farm residents in China. J Med Virol 86: 597–600 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000190
Loading
/content/journal/jgv/10.1099/vir.0.000190
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error