1887

Abstract

Herpes simplex virus 1 (human herpesvirus 1) initially infects epithelial cells of the mucosa and then goes on to infect sensory neurons leading ultimately to a latent infection in trigeminal ganglia (TG). is a core herpesvirus gene that has been identified as a determinant of pathogenesis in several , although the underlying mechanisms are unknown. In a mouse model of ocular infection, a UL24-deficient virus exhibited a reduction in viral titres in tear films of 1 log, whilst titres in TG are often below the level of detection. Moreover, the efficiency of reactivation from latency was also severely reduced. Herein, we investigated how UL24 contributed to acute infection of TG. Our results comparing the impact of UL24 on viral titres in eye tissue versus in tear films did not reveal a general defect in virus release from the cornea. We also found that the impairment of replication seen in mouse primary embryonic neurons with a UL24-deficient virus was not more severe than that observed in an epithelial cell line. Rather, histological analyses revealed that infection with a UL24-deficient virus led to a significant reduction in the number of acutely infected neurons at 3 days post-infection (p.i.). Moreover, there was a significant reduction in the number of neurons positive for viral DNA at 2 days p.i. for the UL24-deficient virus as compared with that observed for WT or a rescue virus. Our results supported a model whereby UL24 functions in the dissemination of acute infection from the cornea to neurons in TG.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000189
2015-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/9/2794.html?itemId=/content/journal/jgv/10.1099/vir.0.000189&mimeType=html&fmt=ahah

References

  1. Bertrand L., Pearson A. 2008; The conserved N-terminal domain of herpes simplex virus 1 UL24 protein is sufficient to induce the spatial redistribution of nucleolin. J Gen Virol 89:1142–1151 [View Article][PubMed]
    [Google Scholar]
  2. Bertrand L., Leiva-Torres G.A., Hyjazie H., Pearson A. 2010; Conserved residues in the UL24 protein of herpes simplex virus 1 are important for dispersal of the nucleolar protein nucleolin. J Virol 84:109–118 [View Article][PubMed]
    [Google Scholar]
  3. Blakeney S., Kowalski J., Tummolo D., DeStefano J., Cooper D., Guo M., Gangolli S., Long D., Zamb T., other authors. 2005; Herpes simplex virus type 2 UL24 gene is a virulence determinant in murine and guinea pig disease models. J Virol 79:10498–10506 [View Article][PubMed]
    [Google Scholar]
  4. Chen S.H., Pearson A., Coen D.M., Chen S.H. 2004; Failure of thymidine kinase-negative herpes simplex virus to reactivate from latency following efficient establishment. J Virol 78:520–523 [View Article][PubMed]
    [Google Scholar]
  5. Coen D.M., Kosz-Vnenchak M., Jacobson J.G., Leib D.A., Bogard C.L., Schaffer P.A., Tyler K.L., Knipe D.M. 1989; Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci U S A 86:4736–4740 [View Article][PubMed]
    [Google Scholar]
  6. Cohrs R.J., Randall J., Smith J., Gilden D.H., Dabrowski C., van Der Keyl H., Tal-Singer R. 2000; Analysis of individual human trigeminal ganglia for latent herpes simplex virus type 1 and varicella-zoster virus nucleic acids using real-time PCR. J Virol 74:11464–11471 [View Article][PubMed]
    [Google Scholar]
  7. Davar G., Kramer M.F., Garber D., Roca A.L., Andersen J.K., Bebrin W., Coen D.M., Kosz-Vnenchak M., Knipe D.M., other authors. 1994; Comparative efficacy of expression of genes delivered to mouse sensory neurons with herpes virus vectors. J Comp Neurol 339:3–11 [View Article][PubMed]
    [Google Scholar]
  8. Davison A.J. 1993; Herpesvirus genes. Rev Med Virol 3:237–244 [View Article]
    [Google Scholar]
  9. Escalante R., Loomis W.F. 1995; Whole-mount in situ hybridization of cell-type-specific mRNAs in Dictyostelium . Dev Biol 171:262–266 [View Article][PubMed]
    [Google Scholar]
  10. Fatahzadeh M., Schwartz R.A. 2007; Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J Am Acad Dermatol 57:737–763 quiz 764–766 [CrossRef]
    [Google Scholar]
  11. Goldin A.L., Sandri-Goldin R.M., Levine M., Glorioso J.C. 1981; Cloning of herpes simplex virus type 1 sequences representing the whole genome. J Virol 38:50–58[PubMed][PubMed]
    [Google Scholar]
  12. Goldstein D.J., Weller S.K. 1988; Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: isolation and characterization of an ICP6 lacZ insertion mutant. J Virol 62:196–205[PubMed]
    [Google Scholar]
  13. Griffiths A., Coen D.M. 2003; High-frequency phenotypic reversion and pathogenicity of an acyclovir-resistant herpes simplex virus mutant. J Virol 77:2282–2286 [View Article][PubMed]
    [Google Scholar]
  14. Hafezi W., Lorentzen E.U., Eing B.R., Müller M., King N.J., Klupp B., Mettenleiter T.C., Kühn J.E. 2012; Entry of herpes simplex virus type 1 (HSV-1) into the distal axons of trigeminal neurons favors the onset of nonproductive, silent infection. PLoS Pathog 8:e1002679 [View Article][PubMed]
    [Google Scholar]
  15. Hill D.P., Robertson K.A. 1998; Differentiation of LA-N-5 neuroblastoma cells into cholinergic neurons: methods for differentiation, immunohistochemistry and reporter gene introduction. Brain Res Brain Res Protoc 2:183–190 [View Article][PubMed]
    [Google Scholar]
  16. Ito H., Sommer M.H., Zerboni L., Baiker A., Sato B., Liang R., Hay J., Ruyechan W., Arvin A.M. 2005; Role of the varicella-zoster virus gene product encoded by open reading frame 35 in viral replication in vitro and in differentiated human skin and T cells in vivo . J Virol 79:4819–4827 [View Article][PubMed]
    [Google Scholar]
  17. Jacobson J.G., Martin S.L., Coen D.M. 1989a; A conserved open reading frame that overlaps the herpes simplex virus thymidine kinase gene is important for viral growth in cell culture. J Virol 63:1839–1843[PubMed]
    [Google Scholar]
  18. Jacobson J.G., Leib D.A., Goldstein D.J., Bogard C.L., Schaffer P.A., Weller S.K., Coen D.M. 1989b; A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology 173:276–283 [View Article][PubMed]
    [Google Scholar]
  19. Jacobson J.G., Chen S.-H., Cook W.J., Kramer M.F., Coen D.M. 1998; Importance of the herpes simplex virus UL24 gene for productive ganglionic infection in mice. Virology 242:161–169 [View Article][PubMed]
    [Google Scholar]
  20. Jacomy H., Fragoso G., Almazan G., Mushynski W.E., Talbot P.J. 2006; Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. Virology 349:335–346 [View Article][PubMed]
    [Google Scholar]
  21. Kasem S., Yu M.H., Yamada S., Kodaira A., Matsumura T., Tsujimura K., Madbouly H., Yamaguchi T., Ohya K., Fukushi H. 2010; The ORF37 (UL24) is a neuropathogenicity determinant of equine herpesvirus 1 (EHV-1) in the mouse encephalitis model. Virology 400:259–270 [View Article][PubMed]
    [Google Scholar]
  22. Kramer M.F., Coen D.M. 1995; Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus. J Virol 69:1389–1399[PubMed]
    [Google Scholar]
  23. Krastev D., Paloff A., Hinova D., Apostolov A., Ovcharoff W., Krastev N. 2008; [Ganglion trigeminale]. Khirurgiia (Sofiia)(3)55–58[PubMed] (in Bulgarian).
    [Google Scholar]
  24. Leib D.A., Coen D.M., Bogard C.L., Hicks K.A., Yager D.R., Knipe D.M., Tyler K.L., Schaffer P.A. 1989; Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. J Virol 63:759–768[PubMed]
    [Google Scholar]
  25. Leiva-Torres G.A., Rochette P.A., Pearson A. 2010; Differential importance of highly conserved residues in UL24 for herpes simplex virus 1 replication in vivo and reactivation. J Gen Virol 91:1109–1116 [View Article][PubMed]
    [Google Scholar]
  26. Livak K.J., Schmittgen T.D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408 [View Article][PubMed]
    [Google Scholar]
  27. Loret S., Guay G., Lippé R. 2008; Comprehensive characterization of extracellular herpes simplex virus type 1 virions. J Virol 82:8605–8618 [View Article][PubMed]
    [Google Scholar]
  28. Lymberopoulos M.H., Pearson A. 2007; Involvement of UL24 in herpes-simplex-virus-1-induced dispersal of nucleolin. Virology 363:397–409 [View Article][PubMed]
    [Google Scholar]
  29. Lymberopoulos M.H., Bourget A., Ben Abdeljelil N., Pearson A. 2011; Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress. Virology 412:341–348 [View Article][PubMed]
    [Google Scholar]
  30. Mochizuki Y., Park M.K., Mori T., Kawashima S. 1995; The difference in autofluorescence features of lipofuscin between brain and adrenal. Zoolog Sci 12:283–288 [View Article][PubMed]
    [Google Scholar]
  31. Nascimento R., Dias J.D., Parkhouse R.M. 2009; The conserved UL24 family of human alpha, beta and gamma herpesviruses induces cell cycle arrest and inactivation of the cyclinB/cdc2 complex. Arch Virol 154:1143–1149 [View Article][PubMed]
    [Google Scholar]
  32. Pearson A., Coen D.M. 2002; Identification, localization, and regulation of expression of the UL24 protein of herpes simplex virus type 1. J Virol 76:10821–10828 [View Article][PubMed]
    [Google Scholar]
  33. Perkins D., Pereira E.F., Gober M., Yarowsky P.J., Aurelian L. 2002; The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) blocks apoptosis in hippocampal neurons, involving activation of the MEK/MAPK survival pathway. J Virol 76:1435–1449 [View Article][PubMed]
    [Google Scholar]
  34. Roizman B., Sears A.E. 1987; An inquiry into the mechanisms of herpes simplex virus latency. Annu Rev Microbiol 41:543–571 [View Article][PubMed]
    [Google Scholar]
  35. Roizman B., Knipe D.M., Whitley R.J. 2007; Herpes simplex viruses. In Fields Virology pp. 3177–3185 Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E. vol. 2 Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  36. Sanders P.G., Wilkie N.M., Davison A.J. 1982; Thymidine kinase deletion mutants of herpes simplex virus type 1. J Gen Virol 63:277–295 [View Article][PubMed]
    [Google Scholar]
  37. Sawtell N.M. 1997; Comprehensive quantification of herpes simplex virus latency at the single-cell level. J Virol 71:5423–5431[PubMed]
    [Google Scholar]
  38. Sawtell N.M. 1998; The probability of in vivo reactivation of herpes simplex virus type 1 increases with the number of latently infected neurons in the ganglia. J Virol 72:6888–6892
    [Google Scholar]
  39. Summers B.C., Margolis T.P., Leib D.A. 2001; Herpes simplex virus type 1 corneal infection results in periocular disease by zosteriform spread. J Virol 75:5069–5075 [View Article][PubMed]
    [Google Scholar]
  40. Tognon M., Guandalini R., Romanelli M.G., Manservigi R., Trevisani B. 1991; Phenotypic and genotypic characterization of locus Syn 5 in herpes simplex virus 1. Virus Res 18:135–150 [View Article][PubMed]
    [Google Scholar]
  41. Whitley R.J., Roizman B. 2001; Herpes simplex virus infections. Lancet 357:1513–1518 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000189
Loading
/content/journal/jgv/10.1099/vir.0.000189
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error