1887

Abstract

Lymphocytes provide gammaherpesviruses with a self-renewing substrate for persistent infection and with transport to mucosal sites for host exit. Their role in the initial colonization of new hosts is less clear. Murid herpesvirus 4 (MuHV-4), an experimentally accessible, B-cell-tropic rhadinovirus (gamma-2 herpesvirus), persistently infects both immunocompetent and B-cell-deficient mice. A lack of B-cells did not compromise MuHV-4 entry into lymphoid tissue, which involved myeloid cell infection. However, it impaired infection amplification and MuHV-4 exit from lymphoid tissue, which involved myeloid to B-cell transfer.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000188
2015-09-01
2020-09-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/9/2788.html?itemId=/content/journal/jgv/10.1099/vir.0.000188&mimeType=html&fmt=ahah

References

  1. Braun A., Worbs T., Moschovakis G.L., Halle S., Hoffmann K., Bölter J., Münk A., Förster R. 2011; Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nat Immunol 12:879–887 [CrossRef][PubMed]
    [Google Scholar]
  2. Carrasco Y.R., Batista F.D. 2007; B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27:160–171 [CrossRef][PubMed]
    [Google Scholar]
  3. Cinamon G., Zachariah M.A., Lam O.M., Foss F.W. Jr, Cyster J.G. 2008; Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol 9:54–62 [CrossRef][PubMed]
    [Google Scholar]
  4. de Lima B.D., May J.S., Stevenson P.G. 2004; Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo . J Virol 78:5103–5112 [CrossRef][PubMed]
    [Google Scholar]
  5. Efstathiou S., Ho Y.M., Hall S., Styles C.J., Scott S.D., Gompels U.A. 1990; Murine herpesvirus 68 is genetically related to the gammaherpesviruses Epstein–Barr virus and herpesvirus saimiri. J Gen Virol 71:1365–1372 [CrossRef][PubMed]
    [Google Scholar]
  6. Faulkner G.C., Burrows S.R., Khanna R., Moss D.J., Bird A.G., Crawford D.H. 1999; X-Linked agammaglobulinemia patients are not infected with Epstein–Barr virus: implications for the biology of the virus. J Virol 73:1555–1564[PubMed]
    [Google Scholar]
  7. Frederico B., Milho R., May J.S., Gillet L., Stevenson P.G. 2012; Myeloid infection links epithelial and B cell tropisms of murid herpesvirus-4. PLoS Pathog 8:e1002935 [CrossRef][PubMed]
    [Google Scholar]
  8. Frederico B., Chao B., May J.S., Belz G.T., Stevenson P.G. 2014; A murid gamma-herpesviruses exploits normal splenic immune communication routes for systemic spread. Cell Host Microbe 15:457–470 [CrossRef][PubMed]
    [Google Scholar]
  9. Gaspar M., May J.S., Sukla S., Frederico B., Gill M.B., Smith C.M., Belz G.T., Stevenson P.G. 2011; Murid herpesvirus-4 exploits dendritic cells to infect B cells. PLoS Pathog 7:e1002346 [CrossRef][PubMed]
    [Google Scholar]
  10. George L.C., Rowe M., Fox C.P. 2012; Epstein–Barr virus and the pathogenesis of T and NK lymphoma: a mystery unsolved. Curr Hematol Malig Rep 7:276–284 [CrossRef][PubMed]
    [Google Scholar]
  11. Gray E.E., Cyster J.G. 2012; Lymph node macrophages. J Innate Immun 4:424–436 [CrossRef][PubMed]
    [Google Scholar]
  12. Heyman B. 2014; Antibodies as natural adjuvants. Curr Top Microbiol Immunol 382:201–219[PubMed]
    [Google Scholar]
  13. Laichalk L.L., Thorley-Lawson D.A. 2005; Terminal differentiation into plasma cells initiates the replicative cycle of Epstein–Barr virus in vivo . J Virol 79:1296–1307 [CrossRef][PubMed]
    [Google Scholar]
  14. Lawler C., Milho R., May J.S., Stevenson P.G. 2015; Rhadinovirus host entry by co-operative infection. PLoS Pathog 11:e1004761 [CrossRef][PubMed]
    [Google Scholar]
  15. Liang X., Collins C.M., Mendel J.B., Iwakoshi N.N., Speck S.H. 2009; Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes. PLoS Pathog 5:e1000677 [CrossRef][PubMed]
    [Google Scholar]
  16. MacLennan I.C., Liu Y.J., Johnson G.D. 1992; Maturation and dispersal of B-cell clones during T cell-dependent antibody responses. Immunol Rev 126:143–161 [CrossRef][PubMed]
    [Google Scholar]
  17. May J.S., Stevenson P.G. 2010; Vaccination with murid herpesvirus-4 glycoprotein B reduces viral lytic replication but does not induce detectable virion neutralization. J Gen Virol 91:2542–2552 [CrossRef][PubMed]
    [Google Scholar]
  18. Milho R., Smith C.M., Marques S., Alenquer M., May J.S., Gillet L., Gaspar M., Efstathiou S., Simas J.P., Stevenson P.G. 2009; In vivo imaging of murid herpesvirus-4 infection. J Gen Virol 90:21–32 [CrossRef][PubMed]
    [Google Scholar]
  19. Milho R., Frederico B., Efstathiou S., Stevenson P.G. 2012; A heparan-dependent herpesvirus targets the olfactory neuroepithelium for host entry. PLoS Pathog 8:e1002986 [CrossRef][PubMed]
    [Google Scholar]
  20. Moseman E.A., Iannacone M., Bosurgi L., Tonti E., Chevrier N., Tumanov A., Fu Y.X., Hacohen N., von Andrian U.H. 2012; B cell maintenance of subcapsular sinus macrophages protects against a fatal viral infection independent of adaptive immunity. Immunity 36:415–426 [CrossRef][PubMed]
    [Google Scholar]
  21. Phan T.G., Grigorova I., Okada T., Cyster J.G. 2007; Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol 8:992–1000 [CrossRef][PubMed]
    [Google Scholar]
  22. Simas J.P., Efstathiou S. 1998; Murine gammaherpesvirus 68: a model for the study of gammaherpesvirus pathogenesis. Trends Microbiol 6:276–282 [CrossRef][PubMed]
    [Google Scholar]
  23. Stewart J.P., Usherwood E.J., Ross A., Dyson H., Nash T. 1998; Lung epithelial cells are a major site of murine gammaherpesvirus persistence. J Exp Med 187:1941–1951 [CrossRef][PubMed]
    [Google Scholar]
  24. Sunil-Chandra N.P., Efstathiou S., Nash A.A. 1992; Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo . J Gen Virol 73:3275–3279 [CrossRef][PubMed]
    [Google Scholar]
  25. Tan C.S., Frederico B., Stevenson P.G. 2014; Herpesvirus delivery to the murine respiratory tract. J Virol Methods 206:105–114 [CrossRef][PubMed]
    [Google Scholar]
  26. Thorley-Lawson D.A., Miyashita E.M., Khan G. 1996; Epstein–Barr virus and the B cell: that's all it takes. Trends Microbiol 4:204–208 [CrossRef][PubMed]
    [Google Scholar]
  27. Usherwood E.J., Stewart J.P., Robertson K., Allen D.J., Nash A.A. 1996; Absence of splenic latency in murine gammaherpesvirus 68-infected B cell-deficient mice. J Gen Virol 77:2819–2825 [CrossRef][PubMed]
    [Google Scholar]
  28. Weck K.E., Barkon M.L., Yoo L.I., Speck S.H., Virgin HW I.V. 1996; Mature B cells are required for acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68. J Virol 70:6775–6780[PubMed]
    [Google Scholar]
  29. You Y., Myers R.C., Freeberg L., Foote J., Kearney J.F., Justement L.B., Carter R.H. 2011; Marginal zone B cells regulate antigen capture by marginal zone macrophages. J Immunol 186:2172–2181 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000188
Loading
/content/journal/jgv/10.1099/vir.0.000188
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error