1887

Abstract

Small spherical viruses are paradigms of supramolecular self-assembly. Identifying the specific structural determinants for virus assembly provides guidelines to develop new antiviral drugs or engineer modified viral particles for medical or technological applications. However, very few systematic studies have been carried out so far to identify those chemical groups at interfaces between virus capsid subunits that are important for viral assembly and function. Foot-and-mouth disease virus (FMDV) and other picornaviruses are assembled in a stepwise process in which different protein–protein interfaces are formed: 5 protomeric subunits oligomerize to form a pentameric intermediate, and 12 of these stable pentameric building blocks associate to form a labile capsid. In this study, a systematic mutational analysis revealed that very few amino acid side chains involved in substantial interactions between protomers within each pentamer are individually required for virus infectivity. This result contrasts sharply with the previous finding that most amino acid side chains involved in interactions between pentamers during the next assembly step are individually required for infectivity. The dramatic difference in sensitivity to single mutations between the two types of protein–protein interfaces in FMDV is discussed in terms of possible structural strategies for achieving self-assembly and genome uncoating in the face of diverse selective constraints.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000187
2015-09-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/9/2595.html?itemId=/content/journal/jgv/10.1099/vir.0.000187&mimeType=html&fmt=ahah

References

  1. Acharya R. , Fry E. , Stuart D. , Fox G. , Rowlands D. , Brown F. . ( 1989;). The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. Nature 337: 709–716 [CrossRef] [PubMed].
    [Google Scholar]
  2. Agbandje-McKenna M. , McKenna R. . (editors) ( 2011;). Structural Virology Cambridge, UK: RSC Publishing;.
    [Google Scholar]
  3. Aksyuk A.A. , Rossmann M.G. . ( 2011;). Bacteriophage assembly. Viruses 3: 172–203 [CrossRef] [PubMed].
    [Google Scholar]
  4. Baranowski E. , Sevilla N. , Verdaguer N. , Ruiz-Jarabo C.M. , Beck E. , Domingo E. . ( 1998;). Multiple virulence determinants of foot-and-mouth disease virus in cell culture. J Virol 72: 6362–6372 [PubMed].
    [Google Scholar]
  5. Bárcena J. , Blanco E. . ( 2013;). Design of novel vaccines based on virus-like particles or chimeric virions. . In Structure and Physics of Viruses, pp. 631–665. Edited by Mateu M. G. . Dordrecht: [CrossRef] Springer;.
    [Google Scholar]
  6. Baxt B. . ( 1987;). Effect of lysosomotropic compounds on early events in foot-and-mouth disease virus replication. Virus Res 7: 257–271 [CrossRef] [PubMed].
    [Google Scholar]
  7. Bittner A.M. , Alonso J.M. , Górzny M.L. , Wege C. , Mateu M. G. . Dordrecht: Springer;. [CrossRef]
  8. Bocanegra R. , Rodríguez-Huete A. , Fuertes M.A. , Del Álamo M. , Mateu M.G. . ( 2012;). Molecular recognition in the human immunodeficiency virus capsid and antiviral design. Virus Res 169: 388–410 [CrossRef] [PubMed].
    [Google Scholar]
  9. Bogan A.A. , Thorn K.S. . ( 1998;). Anatomy of hot spots in protein interfaces. J Mol Biol 280: 1–9 [CrossRef] [PubMed].
    [Google Scholar]
  10. Carrillo E.C. , Giachetti C. , Campos R. . ( 1985;). Early steps in FMDV replication: further analysis on the effects of chloroquine. Virology 147: 118–125 [CrossRef] [PubMed].
    [Google Scholar]
  11. Carrillo-Tripp M. , Shepherd C.M. , Borelli I.A. , Venkataraman S. , Lander G. , Natarajan P. , Johnson J.E. , Brooks C.L. III , Reddy V.S. . ( 2009;). VIPERdb2: an enhanced and Web API enabled relational database for structural virology. Nucleic Acids Res 37: D436–D442 [CrossRef] [PubMed].
    [Google Scholar]
  12. Cotmore S.F. , Tattersall P. . ( 2012;). Mutations at the base of the icosahedral five-fold cylinders of minute virus of mice induce 3′-to-5′ genome uncoating and critically impair entry functions. J Virol 86: 69–80 [CrossRef] [PubMed].
    [Google Scholar]
  13. Curry S. , Abrams C.C. , Fry E. , Crowther J.C. , Belsham G.J. , Stuart D.I. , King A.M. . ( 1995;). Viral RNA modulates the acid sensitivity of foot-and-mouth disease virus capsids. J Virol 69: 430–438 [PubMed].
    [Google Scholar]
  14. Curry S. , Fry E. , Blakemore W. , Abu Ghazaleh R. , Jackson T. , King A. , Lea S. , Newman J. , Rowlands D. , Stuart D. . ( 1996;). Perturbations in the surface structure of A22 Iraq foot-and-mouth disease virus accompanying coupled changes in host cell specificity and antigenicity. Structure 4: 135–145 [CrossRef] [PubMed].
    [Google Scholar]
  15. del Alamo M. , Neira J.L. , Mateu M.G. . ( 2003;). Thermodynamic dissection of a low affinity protein-protein interface involved in human immunodeficiency virus assembly. J Biol Chem 278: 27923–27929 [CrossRef] [PubMed].
    [Google Scholar]
  16. DeLano W.L. . ( 2002;). Pymol Molecular Graphics System on World Wide Web San Carlos, CA: DeLano Scientific; http://www.pymol.org.
    [Google Scholar]
  17. Domingo E. , Ruiz-Jarabo C. , Arias A. , García-Arriaza J. , Escarmís C. . ( 2004;). Quasispecies dynamics and evolution of foot-and-mouth disease virus. . In Foot and Mouth Disease. Current Perspectives, pp. 261–304. Edited by Sobrino F. , Domingo E. . Wymondham: [CrossRef] Horizon Bioscience;.
    [Google Scholar]
  18. Domitrovic T. , Movahed N. , Bothner B. , Matsui T. , Wang Q. , Doerschuk P.C. , Johnson J.E. . ( 2013;). Virus assembly and maturation: auto-regulation through allosteric molecular switches. J Mol Biol 425: 1488–1496 [CrossRef] [PubMed].
    [Google Scholar]
  19. Ellard F.M. , Drew J. , Blakemore W.E. , Stuart D.I. , King A.M.Q. . ( 1999;). Evidence for the role of His-142 of protein 1C in the acid-induced disassembly of foot-and-mouth disease virus capsids. J Gen Virol 80: 1911–1918 [PubMed].[CrossRef]
    [Google Scholar]
  20. Flenniken M.L. , Uchida M. , Liepold L.O. , Kang S. , Young M.J. , Douglas T. . ( 2009;). A library of protein cage architectures as nanomaterials. Curr Top Microbiol Immunol 327: 71–93 [PubMed].
    [Google Scholar]
  21. Forshey B.M. , von Schwedler U. , Sundquist W.I. , Aiken C. . ( 2002;). Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol 76: 5667–5677 [CrossRef] [PubMed].
    [Google Scholar]
  22. Fowler V.L. , Barnett P.V. . ( 2012;). Progress in the development of DNA vaccines against foot-and-mouth disease. Expert Rev Vaccines 11: 481–493 [CrossRef] [PubMed].
    [Google Scholar]
  23. Fry E.E. , Lea S.M. , Jackson T. , Newman J.W. , Ellard F.M. , Blakemore W.E. , Abu-Ghazaleh R. , Samuel A. , King A.M. , Stuart D.I. . ( 1999;). The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBO J 18: 543–554 [CrossRef] [PubMed].
    [Google Scholar]
  24. Ganser-Pornillos B.K. , von Schwedler U.K. , Stray K.M. , Aiken C. , Sundquist W.I. . ( 2004;). Assembly properties of the human immunodeficiency virus type 1 CA protein. J Virol 78: 2545–2552 [CrossRef] [PubMed].
    [Google Scholar]
  25. Glasgow J. , Tullman-Ercek D. . ( 2014;). Production and applications of engineered viral capsids. Appl Microbiol Biotechnol 98: 5847–5858 [CrossRef] [PubMed].
    [Google Scholar]
  26. Grubman M.J. , Baxt B. . ( 2004;). Foot-and-mouth disease. Clin Microbiol Rev 17: 465–493 [CrossRef] [PubMed].
    [Google Scholar]
  27. Hegde N.R. , Maddur M.S. , Rao P.P. , Kaveri S.V. , Bayry J. . ( 2009;). Thermostable foot-and-mouth disease virus as a vaccine candidate for endemic countries: a perspective. Vaccine 27: 2199–2201 [CrossRef] [PubMed].
    [Google Scholar]
  28. Jamal S.M. , Belsham G.J. . ( 2013;). Foot-and-mouth disease: past, present and future. Vet Res 44: 116 [CrossRef] [PubMed].
    [Google Scholar]
  29. Kim H.S. , Huang E. , Desai J. , Sole M. , Pryce E.N. , Okoye M.E. , Person S. , Desai P.J. . ( 2011;). A domain in the herpes simplex virus 1 triplex protein VP23 is essential for closure of capsid shells into icosahedral structures. J Virol 85: 12698–12707 [CrossRef] [PubMed].
    [Google Scholar]
  30. Lamarre B. , Ryadnov M.G. . ( 2011;). Self-assembling viral mimetics: one long journey with short steps. Macromol Biosci 11: 503–513 [CrossRef] [PubMed].
    [Google Scholar]
  31. Lea S. , Hernández J. , Blakemore W. , Brocchi E. , Curry S. , Domingo E. , Fry E. , Abu-Ghazaleh R. , King A. , other authors . ( 1994;). The structure and antigenicity of a type C foot-and-mouth disease virus. Structure 2: 123–139 [CrossRef] [PubMed].
    [Google Scholar]
  32. Li F. , Wang Q. . ( 2014;). Fabrication of nanoarchitectures templated by virus-based nanoparticles: strategies and applications. Small 10: 230–245 [CrossRef] [PubMed].
    [Google Scholar]
  33. Lombardo E. , Ramírez J.C. , Agbandje-McKenna M. , Almendral J.M. . ( 2000;). A beta-stranded motif drives capsid protein oligomers of the parvovirus minute virus of mice into the nucleus for viral assembly. J Virol 74: 3804–3814 [CrossRef] [PubMed].
    [Google Scholar]
  34. Luna E. , Rodríguez-Huete A. , Rincón V. , Mateo R. , Mateu M.G. . ( 2009;). Systematic study of the genetic response of a variable virus to the introduction of deleterious mutations in a functional capsid region. J Virol 83: 10140–10151 [CrossRef] [PubMed].
    [Google Scholar]
  35. Mahy B. W. J. . (editor) ( 2005;). Foot-and-Mouth Disease Virus (Current Topics in Microbiology and Immunology vol. 288) Berlin:: [CrossRef] Springer;.
    [Google Scholar]
  36. Maree F.F. , Blignaut B. , de Beer T.A.P. , Rieder E. . ( 2013;). Analysis of SAT type foot-and-mouth disease virus capsid proteins and the identification of putative amino acid residues affecting virus stability. PLoS One 8: e61612 [CrossRef] [PubMed].
    [Google Scholar]
  37. Martín-Acebes M.A. , González-Magaldi M. , Vázquez-Calvo A. , Armas-Portela R. , Sobrino F. . ( 2009;). Internalization of swine vesicular disease virus into cultured cells: a comparative study with foot-and-mouth disease virus. J Virol 83: 4216–4226 [CrossRef] [PubMed].
    [Google Scholar]
  38. Mateo R. , Mateu M.G. . ( 2007;). Deterministic, compensatory mutational events in the capsid of foot-and-mouth disease virus in response to the introduction of mutations found in viruses from persistent infections. J Virol 81: 1879–1887 [CrossRef] [PubMed].
    [Google Scholar]
  39. Mateo R. , Díaz A. , Baranowski E. , Mateu M.G. . ( 2003;). Complete alanine scanning of intersubunit interfaces in a foot-and-mouth disease virus capsid reveals critical contributions of many side chains to particle stability and viral function. J Biol Chem 278: 41019–41027 [CrossRef] [PubMed].
    [Google Scholar]
  40. Mateo R. , Luna E. , Rincón V. , Mateu M.G. . ( 2008;). Engineering viable foot-and-mouth disease viruses with increased thermostability as a step in the development of improved vaccines. J Virol 82: 12232–12240 [CrossRef] [PubMed].
    [Google Scholar]
  41. Mateu M.G. . ( 2011;). Virus engineering: functionalization and stabilization. Protein Eng Des Sel 24: 53–63 [CrossRef] [PubMed].
    [Google Scholar]
  42. Mateu M.G. . ( 2013a;). Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys 531: 65–79 [CrossRef] [PubMed].
    [Google Scholar]
  43. Mateu M. G. . (editor) ( 2013b;). Structure and Physics of Viruses Dordrecht:: [CrossRef] Springer;.
    [Google Scholar]
  44. Murray C.L. , Jones C.T. , Tassello J. , Rice C.M. . ( 2007;). Alanine scanning of the hepatitis C virus core protein reveals numerous residues essential for production of infectious virus. J Virol 81: 10220–10231 [CrossRef] [PubMed].
    [Google Scholar]
  45. Paton D.J. , Sumption K.J. , Charleston B. . ( 2009;). Options for control of foot-and-mouth disease: knowledge, capability and policy. Philos Trans R Soc Lond B Biol Sci 364: 2657–2667 [CrossRef] [PubMed].
    [Google Scholar]
  46. Pérez R. , Castellanos M. , Rodríguez-Huete A. , Mateu M.G. . ( 2011;). Molecular determinants of self-association and rearrangement of a trimeric intermediate during the assembly of a parvovirus capsid. J Mol Biol 413: 32–40 [CrossRef] [PubMed].
    [Google Scholar]
  47. Poenisch M. , Metz P. , Blankenburg H. , Ruggieri A. , Lee J.Y. , Rupp D. , Rebhan I. , Diederich K. , Kaderali L. , other authors . ( 2015;). Identification of HNRNPK as regulator of hepatitis C virus particle production. PLoS Pathog 11: e1004573 [CrossRef] [PubMed].
    [Google Scholar]
  48. Popescu C.I. , Callens N. , Trinel D. , Roingeard P. , Moradpour D. , Descamps V. , Duverlie G. , Penin F. , Héliot L. , other authors . ( 2011;). NS2 protein of hepatitis C virus interacts with structural and non-structural proteins towards virus assembly. PLoS Pathog 7: e1001278 [CrossRef] [PubMed].
    [Google Scholar]
  49. Porta C. , Kotecha A. , Burman A. , Jackson T. , Ren J. , Loureiro S. , Jones I.M. , Fry E.E. , Stuart D.I. , Charleston B. . ( 2013;). Rational engineering of recombinant picornavirus capsids to produce safe, protective vaccine antigen. PLoS Pathog 9: e1003255 [CrossRef] [PubMed].
    [Google Scholar]
  50. Reguera J. , Carreira A. , Riolobos L. , Almendral J.M. , Mateu M.G. . ( 2004;). Role of interfacial amino acid residues in assembly, stability, and conformation of a spherical virus capsid. Proc Natl Acad Sci U S A 101: 2724–2729 [CrossRef] [PubMed].
    [Google Scholar]
  51. Reguera J. , Grueso E. , Carreira A. , Sánchez-Martínez C. , Almendral J.M. , Mateu M.G. . ( 2005;). Functional relevance of amino acid residues involved in interactions with ordered nucleic acid in a spherical virus. J Biol Chem 280: 17969–17977 [CrossRef] [PubMed].
    [Google Scholar]
  52. Rincón V. , Rodríguez-Huete A. , López-Argüello S. , Ibarra-Molero B. , Sanchez-Ruiz J.M. , Harmsen M.M. , Mateu M.G. . ( 2014;). Identification of the structural basis of thermal lability of a virus provides a rationale for improved vaccines. Structure 22: 1560–1570 [CrossRef] [PubMed].
    [Google Scholar]
  53. Rodriguez L.L. , Grubman M.J. . ( 2009;). Foot and mouth disease virus vaccines. Vaccine 27: (Suppl. 4), D90–D94 [CrossRef] [PubMed].
    [Google Scholar]
  54. Rueckert R.R. . ( 1996;). Picornaviridae: the viruses and their replication. . In Virology , 5th edn., pp. 609–654. Edited by Fields B. , Knipe D. M. , Howley P. M. . Philadelphia, PA: Lippincott-Raven;.
    [Google Scholar]
  55. Sáiz J.C. , Cairó J. , Medina M. , Zuidema D. , Abrams C. , Belsham G.J. , Domingo E. , Vlak J.M. . ( 1994;). Unprocessed foot-and-mouth disease virus capsid precursor displays discontinuous epitopes involved in viral neutralization. J Virol 68: 4557–4564 [PubMed].
    [Google Scholar]
  56. Sayle R.A. , Milner-White E.J. . ( 1995;). rasmol: biomolecular graphics for all. Trends Biochem Sci 20: 374–376 [CrossRef] [PubMed].
    [Google Scholar]
  57. Smith M.T. , Hawes A.K. , Bundy B.C. . ( 2013;). Reengineering viruses and virus-like particles through chemical functionalization strategies. Curr Opin Biotechnol 24: 620–626 [CrossRef] [PubMed].
    [Google Scholar]
  58. Sobrino F. , Domingo E. . ), ( 2004;). Foot and Mouth Disease. Current Perspectives Wymondham: Horizon Bioscience;.
    [Google Scholar]
  59. Sobrino F. , Dávila M. , Ortín J. , Domingo E. . ( 1983;). Multiple genetic variants arise in the course of replication of foot-and-mouth disease virus in cell culture. Virology 128: 310–318 [CrossRef] [PubMed].
    [Google Scholar]
  60. Thompson D. , Muriel P. , Russell D. , Osborne P. , Bromley A. , Rowland M. , Creigh-Tyte S. , Brown C. . ( 2002;). Economic costs of the foot and mouth disease outbreak in the United Kingdom in 2001. Rev Sci Tech 21: 675–687 [PubMed].
    [Google Scholar]
  61. van Vlijmen H.W.T. , Curry S. , Schaefer M. , Karplus M. . ( 1998;). Titration calculations of foot-and-mouth disease virus capsids and their stabilities as a function of pH. J Mol Biol 275: 295–308 [CrossRef] [PubMed].
    [Google Scholar]
  62. Vázquez-Calvo A. , Saiz J.C. , McCullough K.C. , Sobrino F. , Martín-Acebes M.A. . ( 2012;). Acid-dependent viral entry. Virus Res 167: 125–137 [CrossRef] [PubMed].
    [Google Scholar]
  63. Veesler D. , Johnson J.E. . ( 2012;). Virus maturation. Annu Rev Biophys 41: 473–496 [CrossRef] [PubMed].
    [Google Scholar]
  64. Ventoso I. , Berlanga J.J. , Almendral J.M. . ( 2010;). Translation control by protein kinase R restricts minute virus of mice infection: role in parvovirus oncolysis. J Virol 84: 5043–5051 [CrossRef] [PubMed].
    [Google Scholar]
  65. von Schwedler U.K. , Stray K.M. , Garrus J.E. , Sundquist W.I. . ( 2003;). Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J Virol 77: 5439–5450 [CrossRef] [PubMed].
    [Google Scholar]
  66. Vriend G. . ( 1990;). what if: a molecular modeling and drug design program. J Mol Graph 8: 52–56 [CrossRef] [PubMed].
    [Google Scholar]
  67. Wen A.M. , Rambhia P.H. , French R.H. , Steinmetz N.F. . ( 2013;). Design rules for nanomedical engineering: from physical virology to the applications of virus-based materials in medicine. J Biol Phys 39: 301–325 [CrossRef] [PubMed].
    [Google Scholar]
  68. Wu P. , Xiao W. , Conlon T. , Hughes J. , Agbandje-McKenna M. , Ferkol T. , Flotte T. , Muzyczka N. . ( 2000;). Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J Virol 74: 8635–8647 [CrossRef] [PubMed].
    [Google Scholar]
  69. Zhang Y. , Raudah S. , Teo H. , Teo G.W.S. , Fan R. , Sun X. , Orner B.P. . ( 2010;). Alanine-shaving mutagenesis to determine key interfacial residues governing the assembly of a nano-cage maxi-ferritin. J Biol Chem 285: 12078–12086 [CrossRef] [PubMed].
    [Google Scholar]
  70. Zlotnick A. , Mukhopadhyay S. . ( 2011;). Virus assembly, allostery and antivirals. Trends Microbiol 19: 14–23 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000187
Loading
/content/journal/jgv/10.1099/vir.0.000187
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error