1887

Abstract

Potyviruses are important plant pathogens that rely on many plant cellular processes for successful infection. TOR (target of rapamycin) signalling is a key eukaryotic energy-signalling pathway controlling many cellular processes such as translation and autophagy. The dependence of potyviruses on active TOR signalling was examined. Arabidopsis lines downregulated for TOR by RNAi were challenged with the potyviruses watermelon mosaic virus (WMV) and turnip mosaic virus (TuMV). WMV accumulation was found to be severely altered while TuMV accumulation was only slightly delayed. In another approach, using AZD-8055, an active site inhibitor of the TOR kinase, WMV infection was found to be strongly affected. Moreover, AZD-8055 application can cure WMV infection. In contrast, TuMV infection was not affected by AZD-8055. This suggests that potyviruses have different cellular requirements for active plant TOR signalling.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000186
2015-09-01
2019-09-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/9/2898.html?itemId=/content/journal/jgv/10.1099/vir.0.000186&mimeType=html&fmt=ahah

References

  1. Alain T., Lun X., Martineau Y., Sean P., Pulendran B., Petroulakis E., Zemp F.J., Lemay C.G., Roy D., other authors. ( 2010;). Vesicular stomatitis virus oncolysis is potentiated by impairing mTORC1-dependent type I IFN production. Proc Natl Acad Sci U S A 107: 1576–1581 [CrossRef] [PubMed].
    [Google Scholar]
  2. Beauchemin C., Bougie V., Laliberté J.F.. ( 2005;). Simultaneous production of two foreign proteins from a polyvirus-based vector. Virus Res 112: 1–8 [CrossRef] [PubMed].
    [Google Scholar]
  3. Caldana C., Li Y., Leisse A., Zhang Y., Bartholomaeus L., Fernie A.R., Willmitzer L., Giavalisco P.. ( 2013;). Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana. Plant J 73: 897–909 [CrossRef] [PubMed].
    [Google Scholar]
  4. Chuluunbaatar U., Roller R., Feldman M.E., Brown S., Shokat K.M., Mohr I.. ( 2010;). Constitutive mTORC1 activation by a herpesvirus Akt surrogate stimulates mRNA translation and viral replication. Genes Dev 24: 2627–2639 [CrossRef] [PubMed].
    [Google Scholar]
  5. Deprost D., Yao L., Sormani R., Moreau M., Leterreux G., NicolaÏ M., Bedu M., Robaglia C., Meyer C.. ( 2007;). The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep 8: 864–870 [CrossRef] [PubMed].
    [Google Scholar]
  6. Gibbs A., Ohshima K.. ( 2010;). Potyviruses and the digital revolution. Annu Rev Phytopathol 48: 205–223 [CrossRef] [PubMed].
    [Google Scholar]
  7. Gingras A.C., Svitkin Y., Belsham G.J., Pause A., Sonenberg N.. ( 1996;). Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. Proc Natl Acad Sci U S A 93: 5578–5583 [CrossRef] [PubMed].
    [Google Scholar]
  8. Grangeon R., Agbeci M., Chen J., Grondin G., Zheng H., Laliberté J.F.. ( 2012;). Impact on the endoplasmic reticulum and Golgi apparatus of turnip mosaic virus infection. J Virol 86: 9255–9265 [CrossRef] [PubMed].
    [Google Scholar]
  9. Haikonen T., Rajamäki M.L., Valkonen J.P.. ( 2013;). Interaction of the microtubule-associated host protein HIP2 with viral helper component proteinase is important in infection with potato virus A. Mol Plant Microbe Interact 26: 734–744 [CrossRef] [PubMed].
    [Google Scholar]
  10. Ivanov K.I., Eskelin K., Lõhmus A., Mäkinen K.. ( 2014;). Molecular and cellular mechanisms underlying potyvirus infection. J Gen Virol 95: 1415–1429 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kasschau K.D., Xie Z., Allen E., Llave C., Chapman E.J., Krizan K.A., Carrington J.C.. ( 2003;). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell 4: 205–217 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kudchodkar S.B., Yu Y., Maguire T.G., Alwine J.C.. ( 2004;). Human cytomegalovirus infection induces rapamycin-insensitive phosphorylation of downstream effectors of mTOR kinase. J Virol 78: 11030–11039 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kudchodkar S.B., Yu Y., Maguire T.G., Alwine J.C.. ( 2006;). Human cytomegalovirus infection alters the substrate specificities and rapamycin sensitivities of raptor- and rictor-containing complexes. Proc Natl Acad Sci U S A 103: 14182–14187 [CrossRef] [PubMed].
    [Google Scholar]
  14. Laplante M., Sabatini D.M.. ( 2012;). mTOR signaling in growth control and disease. Cell 149: 274–293 [CrossRef] [PubMed].
    [Google Scholar]
  15. Le Gall O., Aranda M., Caranta C.. ( 2011;). Plant resistance to viruses mediated by translation initiation factors. . In Recent Advances in Plant Virology, pp. 177–194. Edited by Caranta C., Aranda M. A., Tepfer M., Lopez-Moya J. L.. Wymondham, UK: Caister Academic Press;.
    [Google Scholar]
  16. Lecoq H., Desbiez C.. ( 2008;). Watermelon mosaic virus and Zucchini yellow mosaic virus. . In Encyclopedia of Virology, 3rd edn., pp. 433–440. Edited by Mahy W. J., Van Regenmortel M. H. V.. Oxford: Elsevier; [CrossRef]
    [Google Scholar]
  17. Leiber R.M., John F., Verhertbruggen Y., Diet A., Knox J.P., Ringli C.. ( 2010;). The T OR pathway modulates the structure of cell walls in Arabidopsis. Plant Cell 22: 1898–1908 [CrossRef] [PubMed].
    [Google Scholar]
  18. Liu Y., Bassham D.C.. ( 2010;). TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS One 5: e11883 [CrossRef] [PubMed].
    [Google Scholar]
  19. Mannová P., Beretta L.. ( 2005;). Activation of the N-Ras-PI3K-Akt-mTOR pathway by hepatitis C virus: control of cell survival and viral replication. J Virol 79: 8742–8749 [CrossRef] [PubMed].
    [Google Scholar]
  20. Montané M.H., Menand B.. ( 2013;). ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change. J Exp Bot 64: 4361–4374 [CrossRef] [PubMed].
    [Google Scholar]
  21. Moorman N.J., Shenk T.. ( 2010;). Rapamycin-resistant mTORC1 kinase activity is required for herpesvirus replication. J Virol 84: 5260–5269 [CrossRef] [PubMed].
    [Google Scholar]
  22. Moreau M., Azzopardi M., Clément G., Dobrenel T., Marchive C., Renne C., Martin-Magniette M.L., Taconnat L., Renou J.P., other authors. ( 2012;). Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of Rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell 24: 463–481 [CrossRef] [PubMed].
    [Google Scholar]
  23. O'Shea C., Klupsch K., Choi S., Bagus B., Soria C., Shen J., McCormick F., Stokoe D.. ( 2005;). Adenoviral proteins mimic nutrient/growth signals to activate the mTOR pathway for viral replication. EMBO J 24: 1211–1221 [CrossRef] [PubMed].
    [Google Scholar]
  24. Ouibrahim L., Mazier M., Estevan J., Pagny G., Decroocq V., Desbiez C., Moretti A., Gallois J.L., Caranta C.. ( 2014;). Cloning of the Arabidopsis rwm1 gene for resistance to Watermelon mosaic virus points to a new function for natural virus resistance genes. Plant J 79: 705–716 [CrossRef] [PubMed].
    [Google Scholar]
  25. Peng L., Liang D., Tong W., Li J., Yuan Z.. ( 2010;). Hepatitis C virus NS5A activates the mammalian target of rapamycin (mTOR) pathway, contributing to cell survival by disrupting the interaction between FK506-binding protein 38 (FKBP38) and mTOR. J Biol Chem 285: 20870–20881 [CrossRef] [PubMed].
    [Google Scholar]
  26. Pérez J.J., Udeshi N.D., Shabanowitz J., Ciordia S., Juárez S., Scott C.L., Olszewski N.E., Hunt D.F., García J.A.. ( 2013;). O-GlcNAc modification of the coat protein of the potyvirus Plum pox virus enhances viral infection. Virology 442: 122–131 [CrossRef] [PubMed].
    [Google Scholar]
  27. Qu F., Morris T.J.. ( 2005;). Suppressors of RNA silencing encoded by plant viruses and their role in viral infections. FEBS Lett 579: 5958–5964 [CrossRef] [PubMed].
    [Google Scholar]
  28. Ren M., Qiu S., Venglat P., Xiang D., Feng L., Selvaraj G., Datla R.. ( 2011;). Target of rapamycin regulates development and ribosomal RNA expression through kinase domain in Arabidopsis. Plant Physiol 155: 1367–1382 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ren M., Venglat P., Qiu S., Feng L., Cao Y., Wang E., Xiang D., Wang J., Alexander D., other authors. ( 2012;). Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. Plant Cell 24: 4850–4874 [CrossRef] [PubMed].
    [Google Scholar]
  30. Robaglia C., Caranta C.. ( 2006;). Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11: 40–45 [CrossRef] [PubMed].
    [Google Scholar]
  31. Schepetilnikov M., Kobayashi K., Geldreich A., Caranta C., Robaglia C., Keller M., Ryabova L.A.. ( 2011;). Viral factor TAV recruits TOR/S6K1 signalling to activate reinitiation after long ORF translation. EMBO J 30: 1343–1356 [CrossRef] [PubMed].
    [Google Scholar]
  32. Schepetilnikov M., Dimitrova M., Mancera-Martínez E., Geldreich A., Keller M., Ryabova L.A.. ( 2013;). TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. EMBO J 32: 1087–1102 [CrossRef] [PubMed].
    [Google Scholar]
  33. Shoji-Kawata S., Levine B.. ( 2009;). Autophagy, antiviral immunity, and viral countermeasures. Biochim Biophys Acta 1793: 1478–1484 [CrossRef] [PubMed].
    [Google Scholar]
  34. Shrivastava S., Bhanja Chowdhury J., Steele R., Ray R., Ray R.B.. ( 2012;). Hepatitis C virus upregulates Beclin1 for induction of autophagy and activates mTOR signaling. J Virol 86: 8705–8712 [CrossRef] [PubMed].
    [Google Scholar]
  35. Wei T., Zhang C., Hong J., Xiong R., Kasschau K.D., Zhou X., Carrington J.C., Wang A.. ( 2010;). Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog 6: e1000962 [CrossRef] [PubMed].
    [Google Scholar]
  36. Wei T., Zhang C., Hou X., Sanfaçon H., Wang A., The S.N.A.R.E.. ( 2013;). protein Syp71 is essential for turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PLoS Pathog 9: e1003378 [CrossRef] [PubMed].
    [Google Scholar]
  37. Xiong Y., McCormack M., Li L., Hall Q., Xiang C., Sheen J.. ( 2013;). Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496: 181–186 [CrossRef] [PubMed].
    [Google Scholar]
  38. Yu Y., Kudchodkar S.B., Alwine J.C.. ( 2005;). Effects of simian virus 40 large and small tumor antigens on mammalian target of rapamycin signaling: small tumor antigen mediates hypophosphorylation of eIF4E-binding protein 1 late in infection. J Virol 79: 6882–6889 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000186
Loading
/content/journal/jgv/10.1099/vir.0.000186
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error