1887

Abstract

Porcine epidemic diarrhoea virus (PEDV) causes acute diarrhoea and dehydration in swine of all ages, with significant mortality in neonatal pigs. The recent rise of PEDV outbreaks in Asia and North America warrants an urgent search for effective vaccines. However, PEDV vaccine research has been hampered by difficulties in isolating and propagating the virus in mammalian cells, thereby complicating the recovery of infectious PEDV using a full-length infectious clone. Here, we engineered VeroE6 cells to stably express porcine aminopeptidase N (pAPN) and used them as a platform to obtain a high-growth variant of PEDV, termed PEDV. Subsequently, the full-length cDNA clone was constructed by assembling contiguous cDNA fragments encompassing the complete genome of PEDV in a bacterial artificial chromosome. Infectious PEDV could be recovered, and the rescued virus displayed phenotypic properties identical to the parental virus. Interestingly, we found that PEDV contained a C-terminal deletion of the spike gene, resulting in disruption of the ORF3 start codon. When a functional ORF3 gene was restored, the recombinant virus could not be rescued, suggesting that ORF3 could suppress PEDV replication . In addition, a high-growth and genetically stable recombinant PEDV expressing a foreign protein could be rescued by replacing the ORF3 gene with the mCherry gene. Together, the results of this study provide a means to generate genetically defined PEDV as a promising vaccine candidate.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000184
2015-08-01
2020-11-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/8/2206.html?itemId=/content/journal/jgv/10.1099/vir.0.000184&mimeType=html&fmt=ahah

References

  1. Almazán F., Dediego M.L., Galán C., Escors D., Alvarez E., Ortego J., Sola I., Zuñiga S., Alonso S., other authors. 2006; Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis. J Virol 80:10900–10906 [CrossRef][PubMed]
    [Google Scholar]
  2. Almazán F., DeDiego M.L., Sola I., Zuñiga S., Nieto-Torres J.L., Marquez-Jurado S., Andrés G., Enjuanes L. 2013; Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate. MBio 4:e00650-e13 [CrossRef][PubMed]
    [Google Scholar]
  3. Almazán F., Sola I., Zuñiga S., Marquez-Jurado S., Morales L., Becares M., Enjuanes L. 2014; Coronavirus reverse genetic systems: infectious clones and replicons. Virus Res 189:262–270 [CrossRef][PubMed]
    [Google Scholar]
  4. Bentley K., Armesto M., Britton P. 2013; Infectious bronchitis virus as a vector for the expression of heterologous genes. PLoS One 8:e67875 [CrossRef][PubMed]
    [Google Scholar]
  5. Bohl E.H., Saif L.J. 1975; Passive immunity in transmissible gastroenteritis of swine: immunoglobulin characteristics of antibodies in milk after inoculating virus by different routes. Infect Immun 11:23–32[PubMed]
    [Google Scholar]
  6. Bohl E.H., Gupta R.K., Olquin M.V., Saif L.J. 1972; Antibody responses in serum, colostrum, and milk of swine after infection or vaccination with transmissible gastroenteritis virus. Infect Immun 6:289–301[PubMed]
    [Google Scholar]
  7. Casais R., Thiel V., Siddell S.G., Cavanagh D., Britton P. 2001; Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol 75:12359–12369 [CrossRef][PubMed]
    [Google Scholar]
  8. Chattha K.S., Roth J.A., Saif L.J. 2015; Strategies for design and application of enteric viral vaccines. Annu Rev Anim Biosci 3:375–395 [CrossRef][PubMed]
    [Google Scholar]
  9. Cong Y., Li X., Bai Y., Lv X., Herrler G., Enjuanes L., Zhou X., Qu B., Meng F., other authors. 2015; Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhoea virus in target cells. Virology 478:1–8 [CrossRef][PubMed]
    [Google Scholar]
  10. Cristofoletti P.T., Mendonça de Sousa F.A., Rahbé Y., Terra W.R. 2006; Characterization of a membrane-bound aminopeptidase purified from Acyrthosiphon pisum midgut cells. A major binding site for toxic mannose lectins. FEBS J 273:5574–5588 [CrossRef][PubMed]
    [Google Scholar]
  11. de Haan C.A., van Genne L., Stoop J.N., Volders H., Rottier P.J. 2003; Coronaviruses as vectors: position dependence of foreign gene expression. J Virol 77:11312–11323 [CrossRef][PubMed]
    [Google Scholar]
  12. Denison M.R., Graham R.L., Donaldson E.F., Eckerle L.D., Baric R.S. 2011; Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol 8:270–279 [CrossRef][PubMed]
    [Google Scholar]
  13. Goede D., Murtaugh M.P., Nerem J., Yeske P., Rossow K., Morrison R. 2015; Previous infection of sows with a “mild” strain of porcine epidemic diarrhoea virus confers protection against infection with a severe strain. Vet Microbiol 176:161–164 [CrossRef][PubMed]
    [Google Scholar]
  14. González J.M., Pénzes Z., Almazán F., Calvo E., Enjuanes L. 2002; Stabilization of a full-length infectious cDNA clone of transmissible gastroenteritis coronavirus by insertion of an intron. J Virol 76:4655–4661 [CrossRef][PubMed]
    [Google Scholar]
  15. Hofmann M., Wyler R. 1988; Propagation of the virus of porcine epidemic diarrhoea in cell culture. J Clin Microbiol 26:2235–2239[PubMed]
    [Google Scholar]
  16. Huang Y.W., Dickerman A.W., Piñeyro P., Li L., Fang L., Kiehne R., Opriessnig T., Meng X.J. 2013; Origin, evolution, and genotyping of emergent porcine epidemic diarrhoea virus strains in the United States. MBio 4:e00737-e13 [CrossRef][PubMed]
    [Google Scholar]
  17. Jung K., Saif L.J. 2015 [CrossRef][PubMed] Porcine epidemic diarrhoea virus infection: etiology, epidemiology, pathogenesis and immunoprophylaxis. Vet J 204:134–143
    [Google Scholar]
  18. Kocherhans R., Bridgen A., Ackermann M., Tobler K. 2001; Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence. Virus Genes 23:137–144 [CrossRef][PubMed]
    [Google Scholar]
  19. Kusanagi K., Kuwahara H., Katoh T., Nunoya T., Ishikawa Y., Samejima T., Tajima M. 1992; Isolation and serial propagation of porcine epidemic diarrhoea virus in cell cultures and partial characterization of the isolate. J Vet Med Sci 54:313–318 [CrossRef][PubMed]
    [Google Scholar]
  20. Kweon C.H., Kwon B.J., Lee J.G., Kwon G.O., Kang Y.B. 1999; Derivation of attenuated porcine epidemic diarrhoea virus (PEDV) as vaccine candidate. Vaccine 17:2546–2553 [CrossRef][PubMed]
    [Google Scholar]
  21. LaBarre D.D., Lowy R.J. 2001; Improvements in methods for calculating virus titer estimates from TCID50 and plaque assays. J Virol Methods 96:107–126 [CrossRef][PubMed]
    [Google Scholar]
  22. Li B.X., Ge J.W., Li Y.J. 2007; Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus. Virology 365:166–172 [CrossRef][PubMed]
    [Google Scholar]
  23. Li C., Li Z., Zou Y., Wicht O., van Kuppeveld F.J., Rottier P.J., Bosch B.J. 2013; Manipulation of the porcine epidemic diarrhoea virus genome using targeted RNA recombination. PLoS One 8:e69997 [CrossRef][PubMed]
    [Google Scholar]
  24. Mantis N.J., Forbes S.J. 2010; Secretory IgA: arresting microbial pathogens at epithelial borders. Immunol Invest 39:383–406 [CrossRef][PubMed]
    [Google Scholar]
  25. Mantis N.J., Rol N., Corthésy B. 2011; Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 4:603–611 [CrossRef][PubMed]
    [Google Scholar]
  26. Masters P.S. 2006; The molecular biology of coronaviruses. Adv Virus Res 66:193–292 [CrossRef][PubMed]
    [Google Scholar]
  27. Masters P.S., Rottier P.J. 2005; Coronavirus reverse genetics by targeted RNA recombination. Curr Top Microbiol Immunol 287:133–159[PubMed]
    [Google Scholar]
  28. Nam E., Lee C. 2010; Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhoea virus infection. Vet Microbiol 144:41–50 [CrossRef][PubMed]
    [Google Scholar]
  29. Oh J.S., Song D.S., Park B.K. 2003; Identification of a putative cellular receptor 150 kDa polypeptide for porcine epidemic diarrhoea virus in porcine enterocytes. J Vet Sci 4:269–275[PubMed]
    [Google Scholar]
  30. Oh J., Lee K.W., Choi H.W., Lee C. 2014; Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhoea virus spike protein. Arch Virol 159:2977–2987 [CrossRef][PubMed]
    [Google Scholar]
  31. Oka T., Saif L.J., Marthaler D., Esseili M.A., Meulia T., Lin C.M., Vlasova A.N., Jung K., Zhang Y., Wang Q. 2014; Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhoea virus strains including a novel strain with a large deletion in the spike gene. Vet Microbiol 173:258–269 [CrossRef][PubMed]
    [Google Scholar]
  32. Ortego J., Escors D., Laude H., Enjuanes L. 2002; Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome. J Virol 76:11518–11529 [CrossRef][PubMed]
    [Google Scholar]
  33. Park J.E., Shin H.J. 2014; Porcine epidemic diarrhoea virus infects and replicates in porcine alveolar macrophages. Virus Res 191:143–152 [CrossRef][PubMed]
    [Google Scholar]
  34. Park S.J., Moon H.J., Luo Y., Kim H.K., Kim E.M., Yang J.S., Song D.S., Kang B.K., Lee C.S., Park B.K. 2008; Cloning and further sequence analysis of the ORF3 gene of wild- and attenuated-type porcine epidemic diarrhoea viruses. Virus Genes 36:95–104 [CrossRef][PubMed]
    [Google Scholar]
  35. Park J.E., Cruz D.J., Shin H.J. 2011; Receptor-bound porcine epidemic diarrhoea virus spike protein cleaved by trypsin induces membrane fusion. Arch Virol 156:1749–1756 [CrossRef][PubMed]
    [Google Scholar]
  36. Park S.J., Kim H.K., Song D.S., An D.J., Park B.K. 2012; Complete genome sequences of a Korean virulent porcine epidemic diarrhoea virus and its attenuated counterpart. J Virol 86:5964 [CrossRef][PubMed]
    [Google Scholar]
  37. Pasick J., Berhane Y., Ojkic D., Maxie G., Embury-Hyatt C., Swekla K., Handel K., Fairles J., Alexandersen S. 2014; Investigation into the role of potentially contaminated feed as a source of the first-detected outbreaks of porcine epidemic diarrhoea in Canada. Transbound Emerg Dis 61:397–410 [CrossRef][PubMed]
    [Google Scholar]
  38. Scobey T., Yount B.L., Sims A.C., Donaldson E.F., Agnihothram S.S., Menachery V.D., Graham R.L., Swanstrom J., Bove P.F., other authors. 2013; Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 110:16157–16162 [CrossRef][PubMed]
    [Google Scholar]
  39. Shirato K., Matsuyama S., Ujike M., Taguchi F. 2011; Role of proteases in the release of porcine epidemic diarrhoea virus from infected cells. J Virol 85:7872–7880 [CrossRef][PubMed]
    [Google Scholar]
  40. Sola I., Alonso S., Zúñiga S., Balasch M., Plana-Durán J., Enjuanes L. 2003; Engineering the transmissible gastroenteritis virus genome as an expression vector inducing lactogenic immunity. J Virol 77:4357–4369 [CrossRef][PubMed]
    [Google Scholar]
  41. Song D., Park B. 2012; Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes 44:167–175 [CrossRef][PubMed]
    [Google Scholar]
  42. St-Jean J.R., Desforges M., Almazán F., Jacomy H., Enjuanes L., Talbot P.J. 2006; Recovery of a neurovirulent human coronavirus OC43 from an infectious cDNA clone. J Virol 80:3670–3674 [CrossRef][PubMed]
    [Google Scholar]
  43. Totura A.L., Baric R.S. 2012; SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Curr Opin Virol 2:264–275 [CrossRef][PubMed]
    [Google Scholar]
  44. Tsukamoto H., Shibata K., Kajiyama H., Terauchi M., Nawa A., Kikkawa F. 2008; Aminopeptidase N (APN)/CD13 inhibitor, Ubenimex, enhances radiation sensitivity in human cervical cancer. BMC Cancer 8:74 [CrossRef][PubMed]
    [Google Scholar]
  45. Usme-Ciro J.A., Lopera J.A., Enjuanes L., Almazán F., Gallego-Gomez J.C. 2014; Development of a novel DNA-launched dengue virus type 2 infectious clone assembled in a bacterial artificial chromosome. Virus Res 180:12–22 [CrossRef][PubMed]
    [Google Scholar]
  46. Vlasova A.N., Marthaler D., Wang Q., Culhane M.R., Rossow K.D., Rovira A., Collins J., Saif L.J. 2014; Distinct characteristics and complex evolution of PEDV strains, North America, May 2013-February 2014. Emerg Infect Dis 20:1620–1628 [CrossRef][PubMed]
    [Google Scholar]
  47. Wang K., Lu W., Chen J., Xie S., Shi H., Hsu H., Yu W., Xu K., Bian C., other authors. 2012; PEDV ORF3 encodes an ion channel protein and regulates virus production. FEBS Lett 586:384–391 [CrossRef][PubMed]
    [Google Scholar]
  48. Wang L., Byrum B., Zhang Y. 2014; New variant of porcine epidemic diarrhoea virus, United States, 2014. Emerg Infect Dis 20:917–919 [CrossRef][PubMed]
    [Google Scholar]
  49. Wanitchang A., Jengarn J., Jongkaewwattana A. 2011; The N terminus of PA polymerase of swine-origin influenza virus H1N1 determines its compatibility with PB2 and PB1 subunits through a strain-specific amino acid serine 186. Virus Res 155:325–333 [CrossRef][PubMed]
    [Google Scholar]
  50. Wanitchang A., Narkpuk J., Jongkaewwattana A. 2013; Nuclear import of influenza B virus nucleoprotein: involvement of an N-terminal nuclear localization signal and a cleavage-protection motif. Virology 443:59–68 [CrossRef][PubMed]
    [Google Scholar]
  51. Wicht O., Li W., Willems L., Meuleman T.J., Wubbolts R.W., van Kuppeveld F.J., Rottier P.J., Bosch B.J. 2014; Proteolytic activation of the porcine epidemic diarrhoea coronavirus spike fusion protein by trypsin in cell culture. J Virol 88:7952–7961 [CrossRef][PubMed]
    [Google Scholar]
  52. Yount B., Curtis K.M., Baric R.S. 2000; Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. J Virol 74:10600–10611 [CrossRef][PubMed]
    [Google Scholar]
  53. Yount B., Denison M.R., Weiss S.R., Baric R.S. 2002; Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59. J Virol 76:11065–11078 [CrossRef][PubMed]
    [Google Scholar]
  54. Yount B., Curtis K.M., Fritz E.A., Hensley L.E., Jahrling P.B., Prentice E., Denison M.R., Geisbert T.W., Baric R.S. 2003; Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 100:12995–13000 [CrossRef][PubMed]
    [Google Scholar]
  55. Zuo J., Thomas W.A., Haigh T.A., Fitzsimmons L., Long H.M., Hislop A.D., Taylor G.S., Rowe M. 2011; Epstein-Barr virus evades CD4+T cell responses in lytic cycle through BZLF1-mediated downregulation of CD74 and the cooperation of vBcl-2. PLoS Pathog 7:e1002455 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000184
Loading
/content/journal/jgv/10.1099/vir.0.000184
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error