Megabirnavirus structure reveals a putative 120-subunit capsid formed by asymmetrical dimers with distinctive large protrusions Free

Abstract

megabirnavirus 1 (RnMBV1) W779 is a bi-segmented dsRNA virus and a strain of the type species of the family . RnMBV1 causes severe reduction of both mycelial growth of in synthetic medium and fungal virulence to plant hosts, and thus has strong potential for virocontrol (biological control using viruses) of white rot. The structure of RnMBV1 was examined by cryo-electron microscopy and three-dimensional reconstruction at 15.7 Å resolution. The diameter of the RnMBV1 capsid was 520 Å, and the capsid was composed of 60 asymmetrical dimers in the  = 1 (so-called  = 2) lattice that is well conserved among dsRNA viruses. However, RnMBV1 has putatively 120 large protrusions with a width of ∼45 Å and a height of ∼50 Å on the virus surface, making it distinguishable from the other dsRNA viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000182
2015-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/8/2435.html?itemId=/content/journal/jgv/10.1099/vir.0.000182&mimeType=html&fmt=ahah

References

  1. Ahlquist P. 2006; Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat Rev Microbiol 4:371–382 [View Article][PubMed]
    [Google Scholar]
  2. Bryson K., McGuffin L.J., Marsden R.L., Ward J.J., Sodhi J.S., Jones D.T. 2005; Protein structure prediction servers at University College London. Nucleic Acids Res 33: (Web Server) [View Article][PubMed]W36–W38
    [Google Scholar]
  3. Cheng R.H., Caston J.R., Wang G.-J., Gu F., Smith T.J., Baker T.S., Bozarth R.F., Trus B.L., Cheng N., other authors. 1994; Fungal virus capsids, cytoplasmic compartments for the replication of double-stranded RNA, formed as icosahedral shells of asymmetric Gag dimers. J Mol Biol 244:255–258 [View Article][PubMed]
    [Google Scholar]
  4. Chiba S., Salaipeth L., Lin Y.H., Sasaki A., Kanematsu S., Suzuki N. 2009; A novel bipartite double-stranded RNA mycovirus from the white root rot fungus Rosellinia necatrix: molecular and biological characterization, taxonomic considerations, and potential for biological control. J Virol 83:12801–12812 [View Article][PubMed]
    [Google Scholar]
  5. Coulibaly F., Chevalier C., Gutsche I., Pous J., Navaza J., Bressanelli S., Delmas B., Rey F.A. 2005; The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Cell 120:761–772 [View Article][PubMed]
    [Google Scholar]
  6. Duquerroy S., Da Costa B., Henry C., Vigouroux A., Libersou S., Lepault J., Navaza J., Delmas B., Rey F.A. 2009; The picobirnavirus crystal structure provides functional insights into virion assembly and cell entry. EMBO J 28:1655–1665 [View Article][PubMed]
    [Google Scholar]
  7. El Omari K., Sutton G., Ravantti J.J., Zhang H., Walter T.S., Grimes J.M., Bamford D.H., Stuart D.I., Mancini E.J. 2013; Plate tectonics of virus shell assembly and reorganization in phage φ8, a distant relative of mammalian reoviruses. Structure 21:1384–1395 doi:10.1016/j.str.2013.06.017 [PubMed] [CrossRef]
    [Google Scholar]
  8. Ghabrial S.A. 1998; Origin, adaptation and evolutionary pathways of fungal viruses. Virus Genes 16:119–131 [View Article][PubMed]
    [Google Scholar]
  9. Ghabrial S.A., Suzuki N. 2009; Viruses of plant pathogenic fungi. Annu Rev Phytopathol 47:353–384 [View Article][PubMed]
    [Google Scholar]
  10. Gómez-Blanco J., Luque D., González J.M., Carrascosa J.L., Alfonso C., Trus B., Havens W.M., Ghabrial S.A., Castón J.R. 2012; Cryphonectria nitschkei virus 1 structure shows that the capsid protein of chrysoviruses is a duplicated helix-rich fold conserved in fungal double-stranded RNA viruses. J Virol 86:8314–8318 [View Article][PubMed]
    [Google Scholar]
  11. Gouet P., Diprose J.M., Grimes J.M., Malby R., Burroughs J.N., Zientara S., Stuart D.I., Mertens P.P. 1999; The highly ordered double-stranded RNA genome of bluetongue virus revealed by crystallography. Cell 97:481–490 [View Article][PubMed]
    [Google Scholar]
  12. Grigorieff N., Harrison S.C. 2011; Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy. Curr Opin Struct Biol 21:265–273 [View Article][PubMed]
    [Google Scholar]
  13. Grimes J.M., Burroughs J.N., Gouet P., Diprose J.M., Malby R., Ziéntara S., Mertens P.P., Stuart D.I. 1998; The atomic structure of the bluetongue virus core. Nature 395:470–478 [View Article][PubMed]
    [Google Scholar]
  14. Hill C.L., Booth T.F., Prasad B.V., Grimes J.M., Mertens P.P., Sutton G.C., Stuart D.I. 1999; The structure of a cypovirus and the functional organization of dsRNA viruses. Nat Struct Biol 6:565–568 [View Article][PubMed]
    [Google Scholar]
  15. Ikeda K., Nakamura H., Arakawa M., Matsumoto N. 2004; Diversity and vertical transmission of double-stranded RNA elements in root rot pathogens of trees, Helicobasidium mompa Rosellinia necatrix . Mycol Res 108:626–634 [View Article][PubMed]
    [Google Scholar]
  16. Kanematsu S., Shimizu T., Salaipeth L., Yaegashi H., Sasaki A., Ito T., Suzuki N. 2014; Genome rearrangement of a mycovirus Rosellinia necatrix megabirnavirus 1 affecting its ability to attenuate virulence of the host fungus. Virology 450-451:308–315 [View Article][PubMed]
    [Google Scholar]
  17. Kantardjieff K.A., Rupp B. 2003; Matthews coefficient probabilities: improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Sci 12:1865–1871 [View Article][PubMed]
    [Google Scholar]
  18. Kondo H., Kanematsu S., Suzuki N. 2013; Viruses of the white root rot fungus, Rosellinia necatrix . Adv Virus Res 86:177–214 [View Article][PubMed]
    [Google Scholar]
  19. Lawton J.A., Estes M.K., Prasad B.V. 2000; Mechanism of genome transcription in segmented dsRNA viruses. Adv Virus Res 55:185–229 [View Article][PubMed]
    [Google Scholar]
  20. Ludtke S.J., Baldwin P.R., Chiu W. 1999; eman: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128:82–97 [View Article][PubMed]
    [Google Scholar]
  21. Luque D., González J.M., Garriga D., Ghabrial S.A., Havens W.M., Trus B., Verdaguer N., Carrascosa J.L., Castón J.R. 2010; The T = 1 capsid protein of Penicillium chrysogenum virus is formed by a repeated helix-rich core indicative of gene duplication. J Virol 84:7256–7266 [View Article][PubMed]
    [Google Scholar]
  22. Luque D., Gómez-Blanco J., Garriga D., Brilot A.F., González J.M., Havens W.M., Carrascosa J.L., Trus B.L., Verdaguer N., other authors. 2014; Cryo-EM near-atomic structure of a dsRNA fungal virus shows ancient structural motifs preserved in the dsRNA viral lineage. Proc Natl Acad Sci U S A 111:7641–7646 [View Article][PubMed]
    [Google Scholar]
  23. Matthews B.W. 1968; Solvent content of protein crystals. J Mol Biol 33:491–497 [View Article][PubMed]
    [Google Scholar]
  24. McGuffin L.J., Bryson K., Jones D.T. 2000; The psipred protein structure prediction server. Bioinformatics 16:404–405 [View Article][PubMed]
    [Google Scholar]
  25. Mertens P. 2004; The dsRNA viruses. Virus Res 101:3–13 [View Article][PubMed]
    [Google Scholar]
  26. Miyazaki N., Uehara-Ichiki T., Xing L., Bergman L., Higashiura A., Nakagawa A., Omura T., Cheng R.H. 2008; Structural evolution of Reoviridae revealed by Oryzavirus in acquiring the second capsid shell. J Virol 82:11344–11353 [View Article][PubMed]
    [Google Scholar]
  27. Miyazaki N., Wu B., Hagiwara K., Wang C.Y., Xing L., Hammar L., Higashiura A., Tsukihara T., Nakagawa A., other authors. 2010; The functional organization of the internal components of Rice dwarf virus. J Biochem 147:843–850 [View Article][PubMed]
    [Google Scholar]
  28. Naitow H., Tang J., Canady M., Wickner R.B., Johnson J.E. 2002; L-A virus at 3.4 Å resolution reveals particle architecture and mRNA decapping mechanism. Nat Struct Biol 9:725–728 [View Article][PubMed]
    [Google Scholar]
  29. Nakagawa A., Miyazaki N., Taka J., Naitow H., Ogawa A., Fujimoto Z., Mizuno H., Higashi T., Watanabe Y., other authors. 2003; The atomic structure of Rice dwarf virus reveals the self-assembly mechanism of component proteins. Structure 11:1227–1238 [View Article][PubMed]
    [Google Scholar]
  30. Nemecek D., Boura E., Wu W., Cheng N., Plevka P., Qiao J., Mindich L., Heymann J.B., Hurley J.H., Steven A.C. 2013; Subunit folds and maturation pathway of a dsRNA virus capsid. Structure 21:1374–1383 [View Article][PubMed]
    [Google Scholar]
  31. Nibert M.L., Tang J., Xie J., Collier A.M., Ghabrial S.A., Baker T.S., Tao Y.J. 2013; 3D structures of fungal partitiviruses. Adv Virus Res 86:59–85 [View Article][PubMed]
    [Google Scholar]
  32. Nibert M.L., Ghabrial S.A., Maiss E., Lesker T., Vainio E.J., Jiang D., Suzuki N. 2014; Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res 188:128–141 [View Article][PubMed]
    [Google Scholar]
  33. Ochoa W.F., Havens W.M., Sinkovits R.S., Nibert M.L., Ghabrial S.A., Baker T.S. 2008; Partitivirus structure reveals a 120-subunit, helix-rich capsid with distinctive surface arches formed by quasisymmetric coat-protein dimers. Structure 16:776–786 [View Article][PubMed]
    [Google Scholar]
  34. Pan J., Dong L., Lin L., Ochoa W.F., Sinkovits R.S., Havens W.M., Nibert M.L., Baker T.S., Ghabrial S.A., Tao Y.J. 2009; Atomic structure reveals the unique capsid organization of a dsRNA virus. Proc Natl Acad Sci U S A 106:4225–4230 [View Article][PubMed]
    [Google Scholar]
  35. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. 2004; UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612 [View Article][PubMed]
    [Google Scholar]
  36. Salaipeth L., Chiba S., Eusebio-Cope A., Kanematsu S., Suzuki N. 2014; Biological properties and expression strategy of Rosellinia necatrix megabirnavirus 1 analysed in an experimental host, Cryphonectria parasitica . J Gen Virol 95:740–750 [View Article][PubMed]
    [Google Scholar]
  37. Suzuki N., Supyani S., Maruyama K., Hillman B.I. 2004; Complete genome sequence of Mycoreovirus-1/Cp9B21, a member of a novel genus within the family Reoviridae, isolated from the chestnut blight fungus Cryphonectria parasitica . J Gen Virol 85:3437–3448 [View Article][PubMed]
    [Google Scholar]
  38. Tang G., Peng L., Baldwin P.R., Mann D.S., Jiang W., Rees I., Ludtke S.J. 2007; eman2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46 [View Article][PubMed]
    [Google Scholar]
  39. Tang J., Ochoa W.F., Li H., Havens W.M., Nibert M.L., Ghabrial S.A., Baker T.S. 2010a; Structure of Fusarium poae virus 1 shows conserved and variable elements of partitivirus capsids and evolutionary relationships to picobirnavirus. J Struct Biol 172:363–371 [View Article][PubMed]
    [Google Scholar]
  40. Tang J., Pan J., Havens W.M., Ochoa W.F., Guu T.S., Ghabrial S.A., Nibert M.L., Tao Y.J., Baker T.S. 2010b; Backbone trace of partitivirus capsid protein from electron cryomicroscopy and homology modeling. Biophys J 99:685–694 [View Article][PubMed]
    [Google Scholar]
  41. Wickner R.B., Fujimura T., Esteban R. 2013; Viruses and prions of Saccharomyces cerevisiae . Adv Virus Res 86:1–36 [View Article][PubMed]
    [Google Scholar]
  42. Yu X., Li B., Fu Y., Xie J., Cheng J., Ghabrial S.A., Li G., Yi X., Jiang D. 2013; Extracellular transmission of a DNA mycovirus and its use as a natural fungicide. Proc Natl Acad Sci U S A 110:1452–1457 doi:10.1073/pnas.1213755110 [PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000182
Loading
/content/journal/jgv/10.1099/vir.0.000182
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited Most Cited RSS feed