1887

Abstract

The effect of oxygen on virus replication is complex, and the role of hypoxia-inducible factor 1 (HIF-1) in the metabolism of virus-infected cells remains uncertain. Solid tumours are hypoxic, and some viruses use this low oxygen tension level to facilitate their replication in tumour cells, thereby causing cell lysis. In addition, the interactions between viruses and HIF-1 may stimulate a trained immunity. However, the evolutionary basis for the oxygen regulatory mechanism of virus replication is ill-defined and requires further investigation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000172
2015-08-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/8/1979.html?itemId=/content/journal/jgv/10.1099/vir.0.000172&mimeType=html&fmt=ahah

References

  1. Albenberg L., Esipova T.V., Judge C.P., Bittinger K., Chen J., Laughlin A., Grunberg S., Baldassano R.N., Lewis J.D., other authors. ( 2014;). Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 147: 1055–1063 e8 [CrossRef] [PubMed].
    [Google Scholar]
  2. Ch'ng W.C., Stanbridge E.J., Yusoff K., Shafee N.. ( 2013;). The oncolytic activity of Newcastle disease virus in clear cell renal carcinoma cells in normoxic and hypoxic conditions: the interplay between von Hippel-Lindau and interferon-β signaling. J Interferon Cytokine Res 33: 346–354 [CrossRef] [PubMed].
    [Google Scholar]
  3. Chang Y.W., Hung M.C., Su J.L.. ( 2014;). The anti-tumor activity of E1A and its implications in cancer therapy. Arch Immunol Ther Exp (Warsz) 62: 195–204 [CrossRef] [PubMed].
    [Google Scholar]
  4. Cheng S.C., Quintin J., Cramer R.A., Shepardson K.M., Saeed S., Kumar V., Giamarellos-Bourboulis E.J., Martens J.H., Rao N.A., other authors. ( 2014;). mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345: 1250684 [CrossRef] [PubMed].
    [Google Scholar]
  5. Cho I.R., Kaowinn S., Moon J., Soh J., Kang H.Y., Jung C.R., Oh S., Song H., Koh S.S., Chung Y.H.. ( 2015;). Oncotropic H-1 parvovirus infection degrades HIF-1α protein in human pancreatic cancer cells independently of VHL and RACK1. Int J Oncol 46: 2076–2082 [PubMed].
    [Google Scholar]
  6. Cipolleschi M.G., Dello Sbarba P., Olivotto M.. ( 1993;). The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82: 2031–2037 [PubMed].
    [Google Scholar]
  7. Dupressoir T., Vanacker J.M., Cornelis J.J., Duponchel N., Rommelaere J.. ( 1989;). Inhibition by parvovirus H-1 of the formation of tumors in nude mice and colonies in vitro by transformed human mammary epithelial cells. Cancer Res 49: 3203–3208 [PubMed].
    [Google Scholar]
  8. Figová K., Hraběta J., Eckschlager T.. ( 2013;). Anticancer efficiency of reovirus in normoxia and hypoxia. Folia Biol (Praha) 59: 68–75 [PubMed].
    [Google Scholar]
  9. Fontaine K.A., Camarda R., Lagunoff M.. ( 2014;). Vaccinia virus requires glutamine but not glucose for efficient replication. J Virol 88: 4366–4374 [CrossRef] [PubMed].
    [Google Scholar]
  10. Friedman G.K., Haas M.C., Kelly V.M., Markert J.M., Gillespie G.Y., Cassady K.A.. ( 2012;). Hypoxia moderates γ 134.5-deleted herpes simplex virus oncolytic activity in human glioma xenoline primary culture. Transl Oncol 5: 200–207 [CrossRef] [PubMed].
    [Google Scholar]
  11. Geletneky K., Nüesch J.P., Angelova A., Kiprianova I., Rommelaere J.. ( 2015;). Double-faceted mechanism of parvoviral oncosuppression. Curr Opin Virol 13: 17–24 [CrossRef] [PubMed].
    [Google Scholar]
  12. Guo Y., Meng X., Ma J., Zheng Y., Wang Q., Wang Y., Shang H.. ( 2014;). Human papillomavirus 16 E6 contributes HIF-1α induced Warburg effect by attenuating the VHL–HIF-1α interaction. Int J Mol Sci 15: 7974–7986 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kilburn D.G., van Wezel A.L.. ( 1972;). Rubella virus replication at controlled dissolved oxygen tension. Biotechnol Bioeng 14: 493–497 [CrossRef] [PubMed].
    [Google Scholar]
  14. Mazzon M., Peters N.E., Loenarz C., Krysztofinska E.M., Ember S.W., Ferguson B.J., Smith G.L.. ( 2013;). A mechanism for induction of a hypoxic response by vaccinia virus. Proc Natl Acad Sci U S A 110: 12444–12449 [CrossRef] [PubMed].
    [Google Scholar]
  15. Mazzon M., Castro C., Roberts L.D., Griffin J.L., Smith G.L.. ( 2015;). A role for vaccinia virus protein C16 in reprogramming cellular energy metabolism. J Gen Virol 96: 395–407 [CrossRef] [PubMed].
    [Google Scholar]
  16. Morinet F., Casetti L., François J.H., Capron C., Pillet S.. ( 2013;). Oxygen tension level and human viral infections. Virology 444: 31–36 [CrossRef] [PubMed].
    [Google Scholar]
  17. Ngo H., Tortorella S.M., Ververis K., Karagiannis T.C.. ( 2015;). The Warburg effect: molecular aspects and therapeutic possibilities. Mol Biol Rep 42: 825–834 [CrossRef].
    [Google Scholar]
  18. Pillet S., Le Guyader N., Hofer T., NguyenKhac F., Koken M., Aubin J.T., Fichelson S., Gassmann M., Morinet F.. ( 2004;). Hypoxia enhances human B19 erythrovirus gene expression in primary erythroid cells. Virology 327: 1–7 [CrossRef] [PubMed].
    [Google Scholar]
  19. Robinson C.M., Pfeiffer J.K.. ( 2014;). Leaping the norovirus hurdle. Science 346: 700–701 [CrossRef] [PubMed].
    [Google Scholar]
  20. Russell S.J., Peng K.W., Bell J.C.. ( 2012;). Oncolytic virotherapy. Nat Biotechnol 30: 658–670 [CrossRef] [PubMed].
    [Google Scholar]
  21. Speth J.M., Hoggatt J., Singh P., Pelus L.M.. ( 2014;). Pharmacologic increase in HIF1α enhances hematopoietic stem and progenitor homing and engraftment. Blood 123: 203–207 [CrossRef] [PubMed].
    [Google Scholar]
  22. Thai M., Graham N.A., Braas D., Nehil M., Komisopoulou E., Kurdistani S.K., McCormick F., Graeber T.G., Christofk H.R.. ( 2014;). Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication. Cell Metab 19: 694–701 [CrossRef] [PubMed].
    [Google Scholar]
  23. Uniacke J., Perera J.K., Lachance G., Francisco C.B., Lee S.. ( 2014;). Cancer cells exploit eIF4E2-directed synthesis of hypoxia response proteins to drive tumor progression. Cancer Res 74: 1379–1389 [CrossRef] [PubMed].
    [Google Scholar]
  24. Yogev O., Lagos D., Enver T., Boshoff C.. ( 2014;). Kaposi's sarcoma herpesvirus microRNAs induce metabolic transformation of infected cells. PLoS Pathog 10: e1004400 [CrossRef] [PubMed].
    [Google Scholar]
  25. Yu Y., Maguire T.G., Alwine J.C.. ( 2014;). ChREBP, a glucose-responsive transcriptional factor, enhances glucose metabolism to support biosynthesis in human cytomegalovirus-infected cells. Proc Natl Acad Sci U S A 111: 1951–1956 [CrossRef] [PubMed].
    [Google Scholar]
  26. Zenonos K., Kyprianou K.. ( 2013;). RAS signaling pathways, mutations and their role in colorectal cancer. World J Gastrointest Oncol 5: 97–101 [CrossRef] [PubMed].
    [Google Scholar]
  27. Zepeda A.B., Pessoa A. Jr, Castillo R.L., Figueroa C.A., Pulgar V.M., Farías J.G.. ( 2013;). Cellular and molecular mechanisms in the hypoxic tissue: role of HIF-1 and ROS. Cell Biochem Funct 31: 451–459 [CrossRef] [PubMed].
    [Google Scholar]
  28. Zhang L., Zhu C., Guo Y., Wei F., Lu J., Qin J., Banerjee S., Wang J., Shang H., other authors. ( 2014;). Inhibition of KAP1 enhances hypoxia-induced Kaposi's sarcoma-associated herpesvirus reactivation through RBP-Jκ. J Virol 88: 6873–6884 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000172
Loading

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error