1887

Abstract

The genes from 14 pigeon circovirus (PiCV) sequences, collected from Taiwan between 2009 and 2010, were sequenced and compared with 14 PiCV gene sequences from GenBank. Based on pairwise comparison, PiCV strains from Taiwan shared 73.9–100 % nucleotide identity and 72–100 % amino acid identity with those of the 14 reported PiCV sequences. Phylogenetic analyses revealed that Taiwanese PiCV isolates can be grouped into two clades: clade 1 comprising isolates from Belgium, Australia, USA, Italy and China, and clade 2 showing close relation to isolates from Germany and France. Recurrent positive selection was detected in clade 1 PiCV lineages, which may contribute to the diversification of predominant PiCV sequences in Taiwan. Further observations suggest that synonymous codon usage variations between PiCV clade 1 and clade 2 may reflect the adaptive divergence on translation efficiency of genes in infectious hosts. Variation in selective pressures acting on the evolutionary divergence and codon usage bias of both clades explains the regional coexistence of virus sequences congeners prevented from competitive exclusion within an island such as Taiwan. Our genotyping results also provide insight into the aetiological agents of PiCV outbreak in Taiwan and we present a comparative analysis of the central coding region of PiCV genome. From the sequence comparison results of 28 PiCVs which differs in regard to the geographical origin and columbid species, we identified conserved regions within the gene that are likely to be suitable for primer selection and vaccine development.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000163
2015-08-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/8/2262.html?itemId=/content/journal/jgv/10.1099/vir.0.000163&mimeType=html&fmt=ahah

References

  1. Abadie J. , Nguyen F. , Groizeleau C. , Amenna N. , Fernandez B. , Guereaud C. , Guigand L. , Robart P. , Lefebvre B. , Wyers M. . ( 2001;). Pigeon circovirus infection: pathological observations and suggested pathogenesis. Avian Pathol 30: 149–158 [CrossRef] [PubMed].
    [Google Scholar]
  2. Agashe D. , Martinez-Gomez N.C. , Drummond D.A. , Marx C.J. . ( 2013;). Good codons, bad transcript: large reductions in gene expression and fitness arising from synonymous mutations in a key enzyme. Mol Biol Evol 30: 549–560 [CrossRef] [PubMed].
    [Google Scholar]
  3. Alvarez-Ponce D. , Guirao-Rico S. , Orengo D.J. , Segarra C. , Rozas J. , Aguadé M. . ( 2012;). Molecular population genetics of the insulin/TOR signal transduction pathway: a network-level analysis in Drosophila melanogaster . Mol Biol Evol 29: 123–132 [CrossRef] [PubMed].
    [Google Scholar]
  4. Angov E. . ( 2011;). Codon usage: nature's roadmap to expression and folding of proteins. Biotechnol J 6: 650–659 [CrossRef] [PubMed].
    [Google Scholar]
  5. Anisimova M. , Nielsen R. , Yang Z. . ( 2003;). Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164: 1229–1236 [PubMed].
    [Google Scholar]
  6. Aris-Brosou S. , Bielawski J.P. . ( 2006;). Large-scale analyses of synonymous substitution rates can be sensitive to assumptions about the process of mutation. Gene 378: 58–64 [CrossRef] [PubMed].
    [Google Scholar]
  7. Baranowski E. , Ruiz-Jarabo C.M. , Domingo E. . ( 2001;). Evolution of cell recognition by viruses. Science 292: 1102–1105 [CrossRef] [PubMed].
    [Google Scholar]
  8. Bernardi G. , Bernardi G. . ( 1986;). Compositional constraints and genome evolution. J Mol Evol 24: 1–11 [CrossRef] [PubMed].
    [Google Scholar]
  9. Cardinale D.J. , DeRosa K. , Duffy S. . ( 2013;). Base composition and translational selection are insufficient to explain codon usage bias in plant viruses. Viruses 5: 162–181 [CrossRef] [PubMed].
    [Google Scholar]
  10. Coletti M. , Franciosini M.P. , Asdrubali G. , Passamonti F. . ( 2000;). Atrophy of the primary lymphoid organs of meat pigeons in Italy associated with circoviruslike particles in the bursa of Fabricius. Avian Dis 44: 454–459 [CrossRef] [PubMed].
    [Google Scholar]
  11. Cságola A. , Lorincz M. , Tombácz K. , Wladár Z. , Kovács E. , Tuboly T. . ( 2012;). Genetic diversity of pigeon circovirus in Hungary. Virus Genes 44: 75–79 [CrossRef] [PubMed].
    [Google Scholar]
  12. Daum I. , Finsterbusch T. , Härtle S. , Göbel T.W. , Mankertz A. , Korbel R. , Grund C. . ( 2009;). Cloning and expression of a truncated pigeon circovirus capsid protein suitable for antibody detection in infected pigeons. Avian Pathol 38: 135–141 [CrossRef] [PubMed].
    [Google Scholar]
  13. Delport W. , Poon A.F.Y. , Frost S.D.W. , Kosakovsky Pond S.L. . ( 2010;). Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26: 2455–2457 [CrossRef] [PubMed].
    [Google Scholar]
  14. Duchatel J.P. , Todd D. , Smyth J.A. , Bustin J.C. , Vindevogel H. . ( 2006;). Observations on detection, excretion and transmission of pigeon circovirus in adult, young and embryonic pigeons. Avian Pathol 35: 30–34 [CrossRef] [PubMed].
    [Google Scholar]
  15. Franciosini M.P. , Fringuelli E. , Tarhuni O. , Guelfi G. , Todd D. , Casagrande Proietti P. , Falocci N. , Asdrubali G. . ( 2005;). Development of a polymerase chain reaction-based in vivo method in the diagnosis of subclinical pigeon circovirus infection. Avian Dis 49: 340–343 [CrossRef] [PubMed].
    [Google Scholar]
  16. Gagnon C.A. , Music N. , Fontaine G. , Tremblay D. , Harel J. . ( 2010;). Emergence of a new type of porcine circovirus in swine (PCV): a type 1 and type 2 PCV recombinant. Vet Microbiol 144: 18–23 [CrossRef] [PubMed].
    [Google Scholar]
  17. Gharib W.H. , Robinson-Rechavi M. . ( 2013;). The branch-site test of positive selection is surprisingly robust but lacks power under synonymous substitution saturation and variation in GC. Mol Biol Evol 30: 1675–1686 [CrossRef] [PubMed].
    [Google Scholar]
  18. Gingold H. , Pilpel Y. . ( 2011;). Determinants of translation efficiency and accuracy. Mol Syst Biol 7: 481 [CrossRef] [PubMed].
    [Google Scholar]
  19. Gough R.E. , Drury S.E. . ( 1996;). Circovirus-like particles in the bursae of young racing pigeons. Vet Rec 138: 167 [PubMed].[CrossRef]
    [Google Scholar]
  20. Gouy M. , Gautier C. . ( 1982;). Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 10: 7055–7074 [CrossRef] [PubMed].
    [Google Scholar]
  21. Gupta S.K. , Ghosh T.C. . ( 2001;). Gene expressivity is the main factor in dictating the codon usage variation among the genes in Pseudomonas aeruginosa . Gene 273: 63–70 [CrossRef] [PubMed].
    [Google Scholar]
  22. Haddrill P.R. , Zeng K. , Charlesworth B. . ( 2011;). Determinants of synonymous and nonsynonymous variability in three species of Drosophila . Mol Biol Evol 28: 1731–1743 [CrossRef] [PubMed].
    [Google Scholar]
  23. Heath L. , Martin D.P. , Warburton L. , Perrin M. , Horsfield W. , Kingsley C. , Rybicki E.P. , Williamson A.L. . ( 2004;). Evidence of unique genotypes of beak and feather disease virus in southern Africa. J Virol 78: 9277–9284 [CrossRef] [PubMed].
    [Google Scholar]
  24. Hershberg R. , Petrov D.A. . ( 2008;). Selection on codon bias. Annu Rev Genet 42: 287–299 [CrossRef] [PubMed].
    [Google Scholar]
  25. Huang Y. , Koonin E.V. , Lipman D.J. , Przytycka T.M. . ( 2009;). Selection for minimization of translational frameshifting errors as a factor in the evolution of codon usage. Nucleic Acids Res 37: 6799–6810 [CrossRef] [PubMed].
    [Google Scholar]
  26. Hughes A.L. , Piontkivska H. . ( 2008;). Nucleotide sequence polymorphism in circoviruses. Infect Genet Evol 8: 130–138 [CrossRef] [PubMed].
    [Google Scholar]
  27. Kim H.K. , Luo Y. , Moon H.J. , Park S.J. , Keum H.O. , Rho S. , Park B.K. . ( 2009;). Phylogenetic and recombination analysis of genomic sequences of PCV2 isolated in Korea. Virus Genes 39: 352–358 [CrossRef] [PubMed].
    [Google Scholar]
  28. Kundu S. , Faulkes C.G. , Greenwood A.G. , Jones C.G. , Kaiser P. , Lyne O.D. , Black S.A. , Chowrimootoo A. , Groombridge J.J. . ( 2012;). Tracking viral evolution during a disease outbreak: the rapid and complete selective sweep of a circovirus in the endangered Echo parakeet. J Virol 86: 5221–5229 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ma M.R. , Ha X.Q. , Ling H. , Wang M.L. , Zhang F.X. , Zhang S.D. , Li G. , Yan W. . ( 2011;). The characteristics of the synonymous codon usage in hepatitis B virus and the effects of host on the virus in codon usage pattern. Virol J 8: 544 [CrossRef] [PubMed].
    [Google Scholar]
  30. Mankertz A. , Hattermann K. , Ehlers B. , Soike D. . ( 2000;). Cloning and sequencing of columbid circovirus (coCV), a new circovirus from pigeons. Arch Virol 145: 2469–2479 [CrossRef] [PubMed].
    [Google Scholar]
  31. McAllister B.F. , Werren J.H. . ( 1997;). Phylogenetic analysis of a retrotransposon with implications for strong evolutionary constraints on reverse transcriptase. Mol Biol Evol 14: 69–80 [CrossRef] [PubMed].
    [Google Scholar]
  32. McOmish F. , Yap P.L. , Dow B.C. , Follett E.A.C. , Seed C. , Keller A.J. , Cobain T.J. , Krusius T. , Kolho E. , other authors . ( 1994;). Geographical distribution of hepatitis C virus genotypes in blood donors: an international collaborative survey. J Clin Microbiol 32: 884–892 [PubMed].
    [Google Scholar]
  33. Nielsen R. , Yang Z. . ( 1998;). Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148: 929–936 [PubMed].
    [Google Scholar]
  34. Olvera A. , Cortey M. , Segalés J. . ( 2007;). Molecular evolution of porcine circovirus type 2 genomes: phylogeny and clonality. Virology 357: 175–185 [CrossRef] [PubMed].
    [Google Scholar]
  35. Oro F. , Mississo E. , Okassa M. , Guilhaumon C. , Fenouillet C. , Cilas C. , Muller E. . ( 2012;). Geographical differentiation of the molecular diversity of cacao swollen shoot virus in Togo. Arch Virol 157: 509–514 [CrossRef] [PubMed].
    [Google Scholar]
  36. Palermo S. , Capra E. , Torremorell M. , Dolzan M. , Davoli R. , Haley C.S. , Giuffra E. . ( 2009;). Toll-like receptor 4 genetic diversity among pig populations. Anim Genet 40: 289–299 [CrossRef] [PubMed].
    [Google Scholar]
  37. Pandit A. , Sinha S. . ( 2011;). Differential trends in the codon usage patterns in HIV-1 genes. PLoS One 6: e28889 [CrossRef] [PubMed].
    [Google Scholar]
  38. Plotkin J.B. , Kudla G. . ( 2011;). Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12: 32–42 [CrossRef] [PubMed].
    [Google Scholar]
  39. Pond S.L. , Frost S.D. . ( 2005;). A genetic algorithm approach to detecting lineage-specific variation in selection pressure. Mol Biol Evol 22: 478–485.[CrossRef]
    [Google Scholar]
  40. Pond S.L.K. , Frost S.D.W. , Muse S.V. . ( 2005;). HyPhy: hypothesis testing using phylogenies. Bioinformatics 21: 676–679 [CrossRef] [PubMed].
    [Google Scholar]
  41. Ramos N. , Mirazo S. , Castro G. , Arbiza J. . ( 2013;). Molecular analysis of Porcine Circovirus Type 2 strains from Uruguay: evidence for natural occurring recombination. Infect Genet Evol 19: 23–31 [CrossRef] [PubMed].
    [Google Scholar]
  42. Ran W. , Higgs P.G. . ( 2012;). Contributions of speed and accuracy to translational selection in bacteria. PLoS One 7: e51652 [CrossRef] [PubMed].
    [Google Scholar]
  43. Rao Y.S. , Chai X.W. , Wang Z.F. , Nie Q.H. , Zhang X.Q. . ( 2013;). Impact of GC content on gene expression pattern in chicken. Genet Sel Evol 45: 9 [CrossRef] [PubMed].
    [Google Scholar]
  44. Raue R. , Schmidt V. , Freick M. , Reinhardt B. , Johne R. , Kamphausen L. , Kaleta E.F. , Müller H. , Krautwald-Junghanns M.E. . ( 2005;). A disease complex associated with pigeon circovirus infection, young pigeon disease syndrome. Avian Pathol 34: 418–425 [CrossRef] [PubMed].
    [Google Scholar]
  45. Robertson B.H. , Jansen R.W. , Khanna B. , Totsuka A. , Nainan O.V. , Siegl G. , Widell A. , Margolis H.S. , Isomura S. , other authors . ( 1992;). Genetic relatedness of hepatitis A virus strains recovered from different geographical regions. J Gen Virol 73: 1365–1377 [CrossRef] [PubMed].
    [Google Scholar]
  46. Rozas J. , Sánchez-DelBarrio J.C. , Messeguer X. , Rozas R. , DnaSP D.N.A. . ( 2003;). polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497 [CrossRef] [PubMed].
    [Google Scholar]
  47. Schmidt V. , Schlömer J. , Lüken C. , Johne R. , Biere B. , Müller H. , Krautwald-Junghanns M.E. . ( 2008;). Experimental infection of domestic pigeons with pigeon circovirus. Avian Dis 52: 380–386 [CrossRef] [PubMed].
    [Google Scholar]
  48. Sémon M. , Mouchiroud D. , Duret L. . ( 2004;). Relationship between gene expression and GC-content in mammals: statistical significance and biological relevance. Hum Mol Genet 14: 421–427 [CrossRef] [PubMed].
    [Google Scholar]
  49. Shabalina S.A. , Spiridonov N.A. , Kashina A. . ( 2013;). Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity. Nucleic Acids Res 41: 2073–2094 [CrossRef] [PubMed].
    [Google Scholar]
  50. Shackelton L.A. , Parrish C.R. , Truyen U. , Holmes E.C. . ( 2005;). High rate of viral evolution associated with the emergence of carnivore parvovirus. Proc Natl Acad Sci U S A 102: 379–384 [CrossRef] [PubMed].
    [Google Scholar]
  51. Shah P. , Gilchrist M.A. . ( 2011;). Explaining complex codon usage patterns with selection for translational efficiency, mutation bias, and genetic drift. Proc Natl Acad Sci U S A 108: 10231–10236 [CrossRef] [PubMed].
    [Google Scholar]
  52. Sharp P.M. , Li W.H. . ( 1987;). The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol 4: 222–230 [PubMed].
    [Google Scholar]
  53. Sharp P.M. , Stenico M. , Peden J.F. , Lloyd A.T. . ( 1993;). Codon usage: mutational bias, translational selection, or both?. Biochem Soc Trans 21: 835–841 [PubMed].[CrossRef]
    [Google Scholar]
  54. Sharp P.M. , Emery L.R. , Zeng K. . ( 2010;). Forces that influence the evolution of codon bias. Philos Trans R Soc Lond B Biol Sci 365: 1203–1212 [CrossRef] [PubMed].
    [Google Scholar]
  55. Shi S.L. , Jiang Y.R. , Liu Y.Q. , Xia R.X. , Qin L. . ( 2013;). Selective pressure dominates the synonymous codon usage in parvoviridae . Virus Genes 46: 10–19 [CrossRef] [PubMed].
    [Google Scholar]
  56. Smyth J.A. , Carroll B.P. . ( 1995;). Circovirus infection in European racing pigeons. Vet Rec 136: 173–174 [CrossRef] [PubMed].
    [Google Scholar]
  57. Smyth J.A. , Weston J. , Moffett D.A. , Todd D. . ( 2001;). Detection of circovirus infection in pigeons by in situ hybridization using cloned DNA probes. J Vet Diagn Invest 13: 475–482 [CrossRef] [PubMed].
    [Google Scholar]
  58. Soike D. . ( 1997;). [Circovirus infections in pigeons]. Tierarztl Prax 25: 52–54 (in German) [PubMed].
    [Google Scholar]
  59. Sørensen M.A. , Pedersen S. . ( 1991;). Absolute in vivo translation rates of individual codons in Escherichia coli. The two glutamic acid codons GAA and GAG are translated with a threefold difference in rate. J Mol Biol 222: 265–280 [CrossRef] [PubMed].
    [Google Scholar]
  60. Stenzel T. , Piasecki T. , Chrza˛stek K. , Julian L. , Muhire B.M. , Golden M. , Martin D.P. , Varsani A. . ( 2014;). Pigeon circoviruses display patterns of recombination, genomic secondary structure and selection similar to those of beak and feather disease viruses. J Gen Virol 95: 1338–1351 [CrossRef] [PubMed].
    [Google Scholar]
  61. Stewart M.E. , Perry R. , Raidal S.R. . ( 2006;). Identification of a novel circovirus in Australian ravens (Corvus coronoides) with feather disease. Avian Pathol 35: 86–92 [CrossRef] [PubMed].
    [Google Scholar]
  62. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  63. Todd D. . ( 2004;). Avian circovirus diseases: lessons for the study of PMWS. Vet Microbiol 98: 169–174 [CrossRef] [PubMed].
    [Google Scholar]
  64. Todd D. , Weston J.H. , Soike D. , Smyth J.A. . ( 2001;). Genome sequence determinations and analyses of novel circoviruses from goose and pigeon. Virology 286: 354–362 [CrossRef] [PubMed].
    [Google Scholar]
  65. Todd D. , Duchatel J.P. , Weston J.H. , Ball N.W. , Borghmans B.J. , Moffett D.A. , Smyth J.A. . ( 2002;). Evaluation of polymerase chain reaction and dot blot hybridisation tests in the diagnosis of pigeon circovirus infections. Vet Microbiol 89: 1–16 [CrossRef] [PubMed].
    [Google Scholar]
  66. Todd D. , Fringuelli E. , Scott A.N. , Borghmans B.J. , Duchatel J.P. , Shivaprasad H.L. , Raidal S.R. , Abadie J.X. , Franciosini M.P. , Smyth J.A. . ( 2008;). Sequence comparison of pigeon circoviruses. Res Vet Sci 84: 311–319 [CrossRef] [PubMed].
    [Google Scholar]
  67. Trotta E. . ( 2013;). Selection on codon bias in yeast: a transcriptional hypothesis. Nucleic Acids Res 41: 9382–9395 [CrossRef] [PubMed].
    [Google Scholar]
  68. Tsai S.S. , Chang Y.L. , Huang Y.L. , Liu H.J. , Ke G.M. , Chiou C.J. , Hsieh Y.C. , Chang T.C. , Cheng L.T. , Chuang K.P. . ( 2014;). Development of a loop-mediated isothermal amplification method for rapid detection of pigeon circovirus. Arch Virol 159: 921–926 [CrossRef] [PubMed].
    [Google Scholar]
  69. Wagner A. . ( 2007;). Rapid detection of positive selection in genes and genomes through variation clusters. Genetics 176: 2451–2463 [CrossRef] [PubMed].
    [Google Scholar]
  70. Wan X.F. , Xu D. , Kleinhofs A. , Zhou J. . ( 2004;). Quantitative relationship between synonymous codon usage bias and GC composition across unicellular genomes. BMC Evol Biol 4: 19 [CrossRef] [PubMed].
    [Google Scholar]
  71. Wang M. , Zhang J. , Zhou J.H. , Chen H.T. , Ma L.N. , Ding Y.Z. , Liu W.Q. , Gu Y.X. , Zhao F. , Liu Y.S. . ( 2011;). Analysis of codon usage in type 1 and the new genotypes of duck hepatitis virus. Biosystems 106: 45–50 [CrossRef] [PubMed].
    [Google Scholar]
  72. Wertheim J.O. , Kosakovsky Pond S.L. . ( 2011;). Purifying selection can obscure the ancient age of viral lineages. Mol Biol Evol 28: 3355–3365 [CrossRef] [PubMed].
    [Google Scholar]
  73. Woods L.W. , Latimer K.S. , Niagro F.D. , Riddell C. , Crowley A.M. , Anderson M.L. , Daft B.M. , Moore J.D. , Campagnoli R.P. , Nordhausen R.W. . ( 1994;). A retrospective study of circovirus infection in pigeons: nine cases (1986–1993). J Vet Diagn Invest 6: 156–164 [CrossRef] [PubMed].
    [Google Scholar]
  74. Yang Z. . ( 1997;). paml: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13: 555–556 [PubMed].
    [Google Scholar]
  75. Yang Z. . ( 2007;). paml 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591 [CrossRef] [PubMed].
    [Google Scholar]
  76. Yu X.P. , Zhu C. , Zheng X.T. , Mu A.X. , Yu H.T. . ( 2009;). [Cloning and analysis of the complete genomes of pigeon circovirus from Zhejiang Province]. Bing Du Xue Bao 25: 355–361 (in Chinese).
    [Google Scholar]
  77. Zhang J. , Nielsen R. , Yang Z. . ( 2005;). Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22: 2472–2479 [CrossRef] [PubMed].
    [Google Scholar]
  78. Zhang J. , Wang M. , Liu W.Q. , Zhou J.H. , Chen H.T. , Ma L.N. , Ding Y.Z. , Gu Y.X. , Liu Y.S. . ( 2011;). Analysis of codon usage and nucleotide composition bias in polioviruses. Virol J 8: 146 [CrossRef] [PubMed].
    [Google Scholar]
  79. Zhou J.H. , Zhang J. , Chen H.T. , Ma L.N. , Liu Y.S. . ( 2010;). Analysis of synonymous codon usage in foot-and-mouth disease virus. Vet Res Commun 34: 393–404 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000163
Loading
/content/journal/jgv/10.1099/vir.0.000163
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error