1887

Abstract

Epstein–Barr virus (EBV) expresses two immediate-early proteins, Rta and Zta, which are key transcription factors that can form a complex with MCAF1 at Zta-responsive elements (ZREs) to synergistically activate several viral lytic genes. Our previous research indicated that RanBPM interacts with Rta and enhances Rta sumoylation. Here we showed that RanBPM binds to Zta and , and acts as an intermediary protein in Rta–Zta complex formation. The Rta–RanBPM–Zta complex was observed to bind with ZREs in the transcriptional activation of key viral genes, such as BHLF1 and BHRF1, while the introduction of RanBPM short hairpin RNA (shRNA) subsequently reduced the synergistic activity of Zta and Rta. RanBPM was found to enhance Zta-dependent transcriptional activity via the inhibition of Zta sumoylation. Interestingly, Z-K12R, a sumoylation-defective mutant of Zta, demonstrated transcriptional activation capabilities that were stronger than those of Zta and apparently unaffected by RanBPM modulation. Finally, RanBPM silencing inhibited the expression of lytic proteins. Taken together, these results shed light on the mechanisms by which RanBPM regulates Zta-mediated transcriptional activation, and point to an important role for RanBPM in EBV lytic progression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000157
2015-08-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/8/2336.html?itemId=/content/journal/jgv/10.1099/vir.0.000157&mimeType=html&fmt=ahah

References

  1. Adamson A.L. 2005; Effects of SUMO-1 upon Epstein-Barr virus BZLF1 function and BMRF1 expression. Biochem Biophys Res Commun 336:22–28 [View Article][PubMed]
    [Google Scholar]
  2. Adamson A.L., Kenney S. 2001; Epstein-Barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J Virol 75:2388–2399 [View Article][PubMed]
    [Google Scholar]
  3. Adamson A.L., Darr D., Holley-Guthrie E., Johnson R.A., Mauser A., Swenson J., Kenney S. 2000; Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. J Virol 74:1224–1233 [View Article][PubMed]
    [Google Scholar]
  4. Bai D., Chen H., Huang B.R. 2003; RanBPM is a novel binding protein for p75NTR. Biochem Biophys Res Commun 309:552–557 [View Article][PubMed]
    [Google Scholar]
  5. Bhende P.M., Seaman W.T., Delecluse H.J., Kenney S.C. 2004; The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Nat Genet 36:1099–1104 [View Article][PubMed]
    [Google Scholar]
  6. Brunkhorst A., Karlén M., Shi J., Mikolajczyk M., Nelson M.A., Metsis M., Hermanson O. 2005; A specific role for the TFIID subunit TAF4 and RanBPM in neural progenitor differentiation. Mol Cell Neurosci 29:250–258 [View Article][PubMed]
    [Google Scholar]
  7. Calderwood M.A., Holthaus A.M., Johannsen E. 2008; The Epstein-Barr virus LF2 protein inhibits viral replication. J Virol 82:8509–8519 [View Article][PubMed]
    [Google Scholar]
  8. Chang L.K., Liu S.T. 2000; Activation of the BRLF1 promoter and lytic cycle of Epstein-Barr virus by histone acetylation. Nucleic Acids Res 28:3918–3925 [View Article][PubMed]
    [Google Scholar]
  9. Chang P.J., Chang Y.S., Liu S.T. 1998; Role of Rta in the translation of bicistronic BZLF1 of Epstein-Barr virus. J Virol 72:5128–5136[PubMed]
    [Google Scholar]
  10. Chang L.K., Lee Y.H., Cheng T.S., Hong Y.R., Lu P.J., Wang J.J., Wang W.H., Kuo C.W., Li S.S., Liu S.T. 2004; Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. J Biol Chem 279:38803–38812 [View Article][PubMed]
    [Google Scholar]
  11. Chang L.K., Chung J.Y., Hong Y.R., Ichimura T., Nakao M., Liu S.T. 2005; Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res 33:6528–6539 [View Article][PubMed]
    [Google Scholar]
  12. Chang L.K., Liu S.T., Kuo C.W., Wang W.H., Chuang J.Y., Bianchi E., Hong Y.R. 2008; Enhancement of transactivation activity of Rta of Epstein-Barr virus by RanBPM. J Mol Biol 379:231–242 [View Article][PubMed]
    [Google Scholar]
  13. Chang L.K., Chuang J.Y., Nakao M., Liu S.T. 2010; MCAF1 and synergistic activation of the transcription of Epstein-Barr virus lytic genes by Rta and Zta. Nucleic Acids Res 38:4687–4700 [View Article][PubMed]
    [Google Scholar]
  14. Chen C.J., Deng Z., Kim A.Y., Blobel G.A., Lieberman P.M. 2001; Stimulation of CREB binding protein nucleosomal histone acetyltransferase activity by a class of transcriptional activators. Mol Cell Biol 21:476–487 [View Article][PubMed]
    [Google Scholar]
  15. Chevallier-Greco A., Manet E., Chavrier P., Mosnier C., Daillie J., Sergeant A. 1986; Both Epstein-Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO J 5:3243–3249[PubMed]
    [Google Scholar]
  16. Chevallier-Greco A., Gruffat H., Manet E., Calender A., Sergeant A. 1989; The Epstein-Barr virus (EBV) DR enhancer contains two functionally different domains: domain A is constitutive and cell specific, domain B is transactivated by the EBV early protein R. J Virol 63:615–623[PubMed]
    [Google Scholar]
  17. Davies A.H., Grand R.J., Evans F.J., Rickinson A.B. 1991; Induction of Epstein-Barr virus lytic cycle by tumor-promoting and non-tumor-promoting phorbol esters requires active protein kinase C. J Virol 65:6838–6844[PubMed]
    [Google Scholar]
  18. Delecluse H.J., Hilsendegen T., Pich D., Zeidler R., Hammerschmidt W. 1998; Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells. Proc Natl Acad Sci U S A 95:8245–8250 [View Article][PubMed]
    [Google Scholar]
  19. Denti S., Sirri A., Cheli A., Rogge L., Innamorati G., Putignano S., Fabbri M., Pardi R., Bianchi E. 2004; RanBPM is a phosphoprotein that associates with the plasma membrane and interacts with the integrin LFA-1. J Biol Chem 279:13027–13034 [View Article][PubMed]
    [Google Scholar]
  20. Farrell P.J., Rowe D.T., Rooney C.M., Kouzarides T. 1989; Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. EMBO J 8:127–132[PubMed]
    [Google Scholar]
  21. Fixman E.D., Hayward G.S., Hayward S.D. 1992; trans-Acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol 66:5030–5039[PubMed]
    [Google Scholar]
  22. Flemington E., Speck S.H. 1990; Autoregulation of Epstein-Barr virus putative lytic switch gene BZLF1. J Virol 64:1227–1232[PubMed]
    [Google Scholar]
  23. Giot J.F., Mikaelian I., Buisson M., Manet E., Joab I., Nicolas J.C., Sergeant A. 1991; Transcriptional interference between the EBV transcription factors EB1 and R: both DNA-binding and activation domains of EB1 are required. Nucleic Acids Res 19:1251–1258 [View Article][PubMed]
    [Google Scholar]
  24. Hagemeier S.R., Dickerson S.J., Meng Q., Yu X., Mertz J.E., Kenney S.C. 2010; Sumoylation of the Epstein-Barr virus BZLF1 protein inhibits its transcriptional activity and is regulated by the virus-encoded protein kinase. J Virol 84:4383–4394 [View Article][PubMed]
    [Google Scholar]
  25. Heilmann A.M., Calderwood M.A., Johannsen E. 2010; Epstein-Barr virus LF2 protein regulates viral replication by altering Rta subcellular localization. J Virol 84:9920–9931 [View Article][PubMed]
    [Google Scholar]
  26. Heilmann A.M., Calderwood M.A., Portal D., Lu Y., Johannsen E. 2012; Genome-wide analysis of Epstein-Barr virus Rta DNA binding. J Virol 86:5151–5164 [View Article][PubMed]
    [Google Scholar]
  27. Henle W., Henle G., Ho H.C., Burtin P., Cachin Y., Clifford P., de Schryver A., de-Thé G., Diehl V., Klein G. 1970; Antibodies to Epstein-Barr virus in nasopharyngeal carcinoma, other head and neck neoplasms, and control groups. J Natl Cancer Inst 44:225–231[PubMed]
    [Google Scholar]
  28. Holley-Guthrie E.A., Quinlivan E.B., Mar E.C., Kenney S. 1990; The Epstein-Barr virus (EBV) BMRF1 promoter for early antigen (EA-D) is regulated by the EBV transactivators, BRLF1 and BZLF1, in a cell-specific manner. J Virol 64:3753–3759[PubMed]
    [Google Scholar]
  29. Ideguchi H., Ueda A., Tanaka M., Yang J., Tsuji T., Ohno S., Hagiwara E., Aoki A., Ishigatsubo Y. 2002; Structural and functional characterization of the USP11 deubiquitinating enzyme, which interacts with the RanGTP-associated protein RanBPM. Biochem J 367:87–95 [View Article][PubMed]
    [Google Scholar]
  30. Jones J.F., Shurin S., Abramowsky C., Tubbs R.R., Sciotto C.G., Wahl R., Sands J., Gottman D., Katz B.Z., Sklar J. 1988; T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. N Engl J Med 318:733–741 [View Article][PubMed]
    [Google Scholar]
  31. Kenney S., Holley-Guthrie E., Mar E.C., Smith M. 1989; The Epstein-Barr virus BMLF1 promoter contains an enhancer element that is responsive to the BZLF1 and BRLF1 transactivators. J Virol 63:3878–3883[PubMed]
    [Google Scholar]
  32. Kouzarides T., Packham G., Cook A., Farrell P.J. 1991; The BZLF1 protein of EBV has a coiled coil dimerisation domain without a heptad leucine repeat but with homology to the C/EBP leucine zipper. Oncogene 6:195–204[PubMed]
    [Google Scholar]
  33. Kramer S., Ozaki T., Miyazaki K., Kato C., Hanamoto T., Nakagawara A. 2005; Protein stability and function of p73 are modulated by a physical interaction with RanBPM in mammalian cultured cells. Oncogene 24:938–944 [View Article][PubMed]
    [Google Scholar]
  34. Lee Y.H., Chiu Y.F., Wang W.H., Chang L.K., Liu S.T. 2008; Activation of the ERK signal transduction pathway by Epstein-Barr virus immediate-early protein Rta. J Gen Virol 89:2437–2446 [View Article][PubMed]
    [Google Scholar]
  35. Lieberman P. 1994; Identification of functional targets of the Zta transcriptional activator by formation of stable preinitiation complex intermediates. Mol Cell Biol 14:8365–8375[PubMed]
    [Google Scholar]
  36. Lieberman P.M., Berk A.J. 1991; The Zta trans-activator protein stabilizes TFIID association with promoter DNA by direct protein-protein interaction. Genes Dev 5:(12B)2441–2454 [View Article][PubMed]
    [Google Scholar]
  37. Lin T.Y., Chu Y.Y., Yang Y.C., Hsu S.W., Liu S.T., Chang L.K. 2014; MCAF1 and Rta-activated BZLF1 transcription in Epstein-Barr virus. PLoS One 9:e90698 [View Article][PubMed]
    [Google Scholar]
  38. Liu P., Speck S.H. 2003; Synergistic autoactivation of the Epstein-Barr virus immediate-early BRLF1 promoter by Rta and Zta. Virology 310:199–206 [View Article][PubMed]
    [Google Scholar]
  39. Liu S.T., Wang W.H., Hong Y.R., Chuang J.Y., Lu P.J., Chang L.K. 2006; Sumoylation of Rta of Epstein-Barr virus is preferentially enhanced by PIASxbeta. Virus Res 119:163–170 [View Article][PubMed]
    [Google Scholar]
  40. Liu T., Roh S.E., Woo J.A., Ryu H., Kang D.E. 2013; Cooperative role of RanBP9 and P73 in mitochondria-mediated apoptosis. Cell Death Dis 4:e476 [View Article][PubMed]
    [Google Scholar]
  41. Luka J., Kallin B., Klein G. 1979; Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94:228–231 [View Article][PubMed]
    [Google Scholar]
  42. Murata T., Hotta N., Toyama S., Nakayama S., Chiba S., Isomura H., Ohshima T., Kanda T., Tsurumi T. 2010; Transcriptional repression by sumoylation of Epstein-Barr virus BZLF1 protein correlates with association of histone deacetylase. J Biol Chem 285:23925–23935 [View Article][PubMed]
    [Google Scholar]
  43. Murrin L.C., Talbot J.N. 2007; RanBPM, a scaffolding protein in the immune and nervous systems. J Neuroimmune Pharmacol 2:290–295 [View Article][PubMed]
    [Google Scholar]
  44. Nishitani H., Hirose E., Uchimura Y., Nakamura M., Umeda M., Nishii K., Mori N., Nishimoto T. 2001; Full-sized RanBPM cDNA encodes a protein possessing a long stretch of proline and glutamine within the N-terminal region, comprising a large protein complex. Gene 272:25–33 [View Article][PubMed]
    [Google Scholar]
  45. Poirier M.B., Laflamme L., Langlois M.F. 2006; Identification and characterization of RanBPM, a novel coactivator of thyroid hormone receptors. J Mol Endocrinol 36:313–325 [View Article][PubMed]
    [Google Scholar]
  46. Quinlivan E.B., Holley-Guthrie E.A., Norris M., Gutsch D., Bachenheimer S.L., Kenney S.C. 1993; Direct BRLF1 binding is required for cooperative BZLF1/BRLF1 activation of the Epstein-Barr virus early promoter, BMRF1. Nucleic Acids Res 21:1999–2007 [View Article][PubMed]
    [Google Scholar]
  47. Rao M.A., Cheng H., Quayle A.N., Nishitani H., Nelson C.C., Rennie P.S. 2002; RanBPM, a nuclear protein that interacts with and regulates transcriptional activity of androgen receptor and glucocorticoid receptor. J Biol Chem 277:48020–48027 [View Article][PubMed]
    [Google Scholar]
  48. Sapetschnig A., Rischitor G., Braun H., Doll A., Schergaut M., Melchior F., Suske G. 2002; Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J 21:5206–5215 [View Article][PubMed]
    [Google Scholar]
  49. Su I.J., Hsieh H.C., Lin K.H., Uen W.C., Kao C.L., Chen C.J., Cheng A.L., Kadin M.E., Chen J.Y. 1991; Aggressive peripheral T-cell lymphomas containing Epstein-Barr viral DNA: a clinicopathologic and molecular analysis. Blood 77:799–808[PubMed]
    [Google Scholar]
  50. Wang D., Li Z., Messing E.M., Wu G. 2002; Activation of Ras/Erk pathway by a novel MET-interacting protein RanBPM. J Biol Chem 277:36216–36222 [View Article][PubMed]
    [Google Scholar]
  51. Wolf H., zur Hausen H., Becker V. 1973; EB viral genomes in epithelial nasopharyngeal carcinoma cells. Nat New Biol 244:245–247 [View Article][PubMed]
    [Google Scholar]
  52. Wu M.S., Shun C.T., Wu C.C., Hsu T.Y., Lin M.T., Chang M.C., Wang H.P., Lin J.T. 2000; Epstein-Barr virus-associated gastric carcinomas: relation to H. pylori infection and genetic alterations. Gastroenterology 118:1031–1038 [View Article][PubMed]
    [Google Scholar]
  53. Yang Y.C., Chang L.K. 2013; Role of TAF4 in transcriptional activation by Rta of Epstein-Barr Virus. PLoS One 8:e54075 [View Article][PubMed]
    [Google Scholar]
  54. Yang Y.C., Yoshikai Y., Hsu S.W., Saitoh H., Chang L.K. 2013; Role of RNF4 in the ubiquitination of Rta of Epstein-Barr virus. J Biol Chem 288:12866–12879 [View Article][PubMed]
    [Google Scholar]
  55. Ye J., Gradoville L., Daigle D., Miller G. 2007; De novo protein synthesis is required for lytic cycle reactivation of Epstein-Barr virus, but not Kaposi's sarcoma-associated herpesvirus, in response to histone deacetylase inhibitors and protein kinase C agonists. J Virol 81:9279–9291 [View Article][PubMed]
    [Google Scholar]
  56. Ye J., Gradoville L., Miller G. 2010; Cellular immediate-early gene expression occurs kinetically upstream of Epstein-Barr virus bzlf1 and brlf1 following cross-linking of the B cell antigen receptor in the Akata Burkitt lymphoma cell line. J Virol 84:12405–12418 [View Article][PubMed]
    [Google Scholar]
  57. Yin Y.X., Sun Z.P., Huang S.H., Zhao L., Geng Z., Chen Z.Y. 2010; RanBPM contributes to TrkB signaling and regulates brain-derived neurotrophic factor-induced neuronal morphogenesis and survival. J Neurochem 114:110–121[PubMed]
    [Google Scholar]
  58. Yu X., McCarthy P.J., Wang Z., Gorlen D.A., Mertz J.E. 2012; Shutoff of BZLF1 gene expression is necessary for immortalization of primary B cells by Epstein–Barr virus. J Virol 86:8086–8096 [View Article][PubMed]
    [Google Scholar]
  59. Yuan Y., Fu C., Chen H., Wang X., Deng W., Huang B.R. 2006; The Ran binding protein RanBPM interacts with TrkA receptor. Neurosci Lett 407:26–31 [View Article][PubMed]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.000157
Loading
/content/journal/jgv/10.1099/vir.0.000157
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error