1887

Abstract

Viroid systemic spread involves cell-to-cell movement from initially infected cells via plasmodesmata, long-distance movement within the phloem and again cell-to-cell movement to invade distal tissues including the mesophyll. Citrus exocortis viroid (CEVd), hop stunt viroid, citrus bent leaf viroid, citrus dwarfing viroid, citrus bark cracking viroid and citrus viroid V remained phloem restricted when singly infecting , and but not Etrog citron, where they were additionally detected in mesophyll protoplasts. However, when CEVd-infected was side-grafted with Etrog citron – with the resulting plants being composed of a stock and an Etrog citron branch – the viroid was detected in mesophyll protoplasts of the former, thus indicating that the ability of Etrog citron to support viroid invasion of non-vascular tissues was transferred to the stock. Further results suggest that a translocatable factor from Etrog citron mediates this viroid trafficking.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000154
2015-08-01
2020-03-30
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/8/2405.html?itemId=/content/journal/jgv/10.1099/vir.0.000154&mimeType=html&fmt=ahah

References

  1. Bani-Hashemian S.M., Barbosa C.J., Serra P., Duran-Vila N. 2010; Effects of resistance of Eremocitrus glauca Microcitrus australis to viroid infection: replication, accumulation and long-distance movement of six citrus viroids. Plant Pathol 59:413–421 [CrossRef]
    [Google Scholar]
  2. Barbosa C.J., Pina J.A., Navarro L., Duran-Vila N. 2002; Replication/accumulation and symptom expression of citrus viroids on some species of Citrus and related genera. In Proceedings of the 15th Conference of the International Organization of Citrus Virologists pp. 264–271 Edited by Duran-Vila N., Milne R. G., Da Graça J. V. Riverside, CA: IOCV;
    [Google Scholar]
  3. Barbosa C.J., Pina J.A., Pérez-Panadés J., Bernad L., Serra P., Navarro L., Duran-Vila N. 2005; Mechanical transmission of citrus viroids. Plant Dis 89:749–754 [CrossRef]
    [Google Scholar]
  4. Bernad L., Duran-Vila N. 2006; A novel RT-PCR approach for detection and characterization of citrus viroids. Mol Cell Probes 20:105–113 [CrossRef][PubMed]
    [Google Scholar]
  5. Di Serio F., Flores R., Verhoeven J.Th.J., Li S.F., Pallás V., Randles J.W., Sano T., Vidalakis G., Owens R.A. 2014; Current status of viroid taxonomy. Arch Virol 159:3467–3478 [CrossRef][PubMed]
    [Google Scholar]
  6. Ding B., Wang Y. 2009; Viroids: uniquely simple and tractable models to elucidate regulation of cell-to-cell trafficking of RNA. DNA Cell Biol 28:51–56 [CrossRef][PubMed]
    [Google Scholar]
  7. Ding B., Itaya A., Woo Y.M. 1999; Plasmodesmata and cell-to-cell communication in plants. Int Rev Cytol 190:251–316 [CrossRef]
    [Google Scholar]
  8. Fagoaga C., Pensabene-Bellavia G., Moreno P., Navarro L., Flores R., Peña L. 2011; Ectopic expression of the p23 silencing suppressor of Citrus tristeza virus differentially modifies viral accumulation and tropism in two transgenic woody hosts. Mol Plant Pathol 12:898–910 [CrossRef][PubMed]
    [Google Scholar]
  9. Flores R., Hernández C., Martínez de Alba A.E., Daròs J.A., Di Serio F. 2005; Viroids and viroid-host interactions. Annu Rev Phytopathol 43:117–139 [CrossRef][PubMed]
    [Google Scholar]
  10. Flores R., Gago-Zachert S., Serra P., Sanjuán R., Elena S.F. 2014; Viroids: survivors from the RNA world?. Annu Rev Microbiol 68:395–414 [CrossRef][PubMed]
    [Google Scholar]
  11. Foissac X., Duran-Vila N. 2000; Characterisation of two citrus apscaviroids isolated in Spain. Arch Virol 145:1975–1983 [CrossRef][PubMed]
    [Google Scholar]
  12. Francis M.I., Szychowski J.A., Semancik J.S. 1995; Structural sites specific to citrus viroid groups. J Gen Virol 76:1081–1089 [CrossRef][PubMed]
    [Google Scholar]
  13. Gandía M., Rubio L., Palacio A., Duran-Vila N. 2005; Genetic variation and population structure of an isolate of Citrus exocortis viroid (CEVd) and of the progenies of two infectious sequence variants. Arch Virol 150:1945–1957 [CrossRef][PubMed]
    [Google Scholar]
  14. Gómez G., Pallás V. 2001; Identification of an in vitro ribonucleoprotein complex between a viroid RNA and a phloem protein from cucumber plants. Mol Plant Microbe Interact 14:910–913 [CrossRef][PubMed]
    [Google Scholar]
  15. Grosser J.W., Gmitter F.G. Jr 1990; Protoplast fusion and citrus improvement. Plant Breed Rev 8:339–374
    [Google Scholar]
  16. Hajeri S., Ramadugu C., Manjunath K., Ng J., Lee R., Vidalakis G. 2011; In vivo generated Citrus exocortis viroid progeny variants display a range of phenotypes with altered levels of replication, systemic accumulation and pathogenicity. Virology 417:400–409 [CrossRef]
    [Google Scholar]
  17. Kalantidis K., Denti M.A., Tzortzakaki S., Marinou E., Tabler M., Tsagris M. 2007; Virp1 is a host protein with a major role in Potato spindle tuber viroid infection in Nicotiana plants. J Virol 81:12872–12880 [CrossRef][PubMed]
    [Google Scholar]
  18. Maniataki E., Martínez de Alba A.E., Sägesser R., Tabler M., Tsagris M. 2003; Viroid RNA systemic spread may depend on the interaction of a 71-nucleotide bulged hairpin with the host protein VirP1. RNA 9:346–354 [CrossRef][PubMed]
    [Google Scholar]
  19. Murcia N., Serra P., Olmos A., Duran-Vila N. 2009; A novel hybridization approach for detection of citrus viroids. Mol Cell Probes 23:95–102 [CrossRef][PubMed]
    [Google Scholar]
  20. Owens R.A., Blackburn M., Ding B. 2001; Possible involvement of the phloem lectin in long-distance viroid movement. Mol Plant Microbe Interact 14:905–909 [CrossRef][PubMed]
    [Google Scholar]
  21. Palacio-Bielsa A., Foissac X., Duran-Vila N. 1999; Indexing of citrus viroids by imprint hybridization. Eur J Plant Pathol 105:897–903 [CrossRef]
    [Google Scholar]
  22. Palacio-Bielsa A., Romero-Durbán J., Duran-Vila N. 2004; Characterization of citrus HSVd isolates. Arch Virol 149:537–552 [CrossRef][PubMed]
    [Google Scholar]
  23. Palukaitis P. 1987; Potato spindle tuber viroid: investigation of the long-distance, intra-plant transport route. Virology 158:239–241 [CrossRef][PubMed]
    [Google Scholar]
  24. Qi Y., Pélissier T., Itaya A., Hunt E., Wassenegger M., Ding B. 2004; Direct role of a viroid RNA motif in mediating directional RNA trafficking across a specific cellular boundary. Plant Cell 16:1741–1752 [CrossRef][PubMed]
    [Google Scholar]
  25. Semancik J.S., Morris T.J., Weathers L.G., Rodorf B.F., Kearns D.R. 1975; Physical properties of a minimal infectious RNA (viroid) associated with the exocortis disease. Virology 63:160–167 [CrossRef][PubMed]
    [Google Scholar]
  26. Serra P., Barbosa C.J., Daròs J.A., Flores R., Duran-Vila N. 2008; Citrus viroid V: molecular characterization and synergistic interactions with other members of the genus Apscaviroid . Virology 370:102–112 [CrossRef][PubMed]
    [Google Scholar]
  27. Solovyev A.G., Makarova S.S., Remizowa M.V., Lim H.S., Hammond J., Owens R.A., Kopertekh L., Schiemann J., Morozov S.Y. 2013; Possible role of the Nt-4/1 protein in macromolecular transport in vascular tissue. Plant Signal Behav 4161:25784[PubMed] [CrossRef]
    [Google Scholar]
  28. Takeda R., Petrov A.I., Leontis N.B., Ding B. 2011; A three-dimensional RNA motif in Potato spindle tuber viroid mediates trafficking from palisade mesophyll to spongy mesophyll in Nicotiana benthamiana . Plant Cell 23:258–272 [CrossRef][PubMed]
    [Google Scholar]
  29. Vernière C., Perrier X., Dubois C., Dubois A., Botella L., Chabrier C., Bové J.M., Duran-Vila N. 2004; Citrus viroids: symptom expression and effect on vegetative growth and yield of clementine trees grafted on trifoliate orange. Plant Dis 88:1189–1197 [CrossRef]
    [Google Scholar]
  30. Vidalakis G., Gumpf D.J., Bash J.A., Semancik J.S. 2004; Finger imprint of Poncirus trifoliata: a specific interaction of a viroid, a host, and irrigation. Plant Dis 88:709–713 [CrossRef]
    [Google Scholar]
  31. Zhong X., Tao X., Stombaugh J., Leontis N., Ding B. 2007; Tertiary structure and function of an RNA motif required for plant vascular entry to initiate systemic trafficking. EMBO J 26:3836–3846 [CrossRef][PubMed]
    [Google Scholar]
  32. Zhong X., Archual A.J., Amin A.A., Ding B. 2008; A genomic map of viroid RNA motifs critical for replication and systemic trafficking. Plant Cell 20:35–47 [CrossRef][PubMed]
    [Google Scholar]
  33. Zhu Y., Green L., Woo Y.M., Owens R., Ding B. 2001; Cellular basis of potato spindle tuber viroid systemic movement. Virology 279:69–77 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000154
Loading
/content/journal/jgv/10.1099/vir.0.000154
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error