1887

Abstract

The conserved alphaherpesvirus serine/threonine kinase US3 causes dramatic changes in the actin cytoskeleton, consisting of actin stress fibre breakdown and protrusion formation, associated with increased virus spread. Here, we showed that US3 expression led to RhoA phosphorylation at serine 188 (S188), one of the hallmarks of suppressed RhoA signalling, and that expression of a non-phosphorylatable RhoA variant interfered with the ability of US3 to induce actin rearrangements. Furthermore, inhibition of cellular protein kinase A (PKA) eliminated the ability of US3 to induce S188 RhoA phosphorylation, pointing to a role for PKA in US3-induced RhoA phosphorylation. Hence, the US3 kinase leads to PKA-dependent S188 RhoA phosphorylation, which contributes to US3-mediated actin rearrangements. Our data suggest that US3 efficiently usurps the antagonistic RhoA and Cdc42/Rac1/p21-activated kinase signalling branches to rearrange the actin cytoskeleton.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000152
2015-08-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/8/2328.html?itemId=/content/journal/jgv/10.1099/vir.0.000152&mimeType=html&fmt=ahah

References

  1. Arakawa Y., Cordeiro J.V., Way M.. ( 2007;). F11L-mediated inhibition of RhoA-mDia signaling stimulates microtubule dynamics during vaccinia virus infection. Cell Host Microbe 1: 213–226 [CrossRef] [PubMed].
    [Google Scholar]
  2. Baskerville A.. ( 1973;). The histopathology of experimental pneumonia in pigs produced by Aujeszky's disease virus. Res Vet Sci 14: 223–228 [PubMed].
    [Google Scholar]
  3. Benetti L., Roizman B.. ( 2004;). Herpes simplex virus protein kinase US3 activates and functionally overlaps protein kinase A to block apoptosis. Proc Natl Acad Sci U S A 101: 9411–9416 [CrossRef] [PubMed].
    [Google Scholar]
  4. Benetti L., Munger J., Roizman B.. ( 2003;). The herpes simplex virus 1 US3 protein kinase blocks caspase-dependent double cleavage and activation of the proapoptotic protein BAD. J Virol 77: 6567–6573 [CrossRef] [PubMed].
    [Google Scholar]
  5. Brazzoli M., Bianchi A., Filippini S., Weiner A., Zhu Q., Pizza M., Crotta S.. ( 2008;). CD81 is a central regulator of cellular events required for hepatitis C virus infection of human hepatocytes. J Virol 82: 8316–8329 [CrossRef] [PubMed].
    [Google Scholar]
  6. Brzozowska A., Rychłowski M., Lipińska A.D., Bieńkowska-Szewczyk K.. ( 2010;). Point mutations in BHV-1 Us3 gene abolish its ability to induce cytoskeletal changes in various cell types. Vet Microbiol 143: 8–13 [CrossRef] [PubMed].
    [Google Scholar]
  7. de Wind N., Zijderveld A., Glazenburg K., Gielkens A., Berns A.. ( 1990;). Linker insertion mutagenesis of herpesviruses: inactivation of single genes within the Us region of pseudorabies virus. J Virol 64: 4691–4696 [PubMed].
    [Google Scholar]
  8. del Real G., Jiménez-Baranda S., Mira E., Lacalle R.A., Lucas P., Gómez-Moutón C., Alegret M., Peña J.M., Rodríguez-Zapata M., other authors. ( 2004;). Statins inhibit HIV-1 infection by down-regulating Rho activity. J Exp Med 200: 541–547 [CrossRef] [PubMed].
    [Google Scholar]
  9. Deruelle M., Geenen K., Nauwynck H.J., Favoreel H.W.. ( 2007;). A point mutation in the putative ATP binding site of the pseudorabies virus US3 protein kinase prevents Bad phosphorylation and cell survival following apoptosis induction. Virus Res 128: 65–70 [CrossRef] [PubMed].
    [Google Scholar]
  10. Dong J.M., Leung T., Manser E., Lim L.. ( 1998;). cAMP-induced morphological changes are counteracted by the activated RhoA small GTPase and the Rho kinase ROKalpha. J Biol Chem 273: 22554–22562 [CrossRef] [PubMed].
    [Google Scholar]
  11. Ellerbroek S.M., Wennerberg K., Burridge K.. ( 2003;). Serine phosphorylation negatively regulates RhoA in vivo. J Biol Chem 278: 19023–19031 [CrossRef] [PubMed].
    [Google Scholar]
  12. Erazo A., Kinchington P.R.. ( 2010;). Varicella-zoster virus open reading frame 66 protein kinase and its relationship to alphaherpesvirus US3 kinases. Curr Top Microbiol Immunol 342: 79–98 [PubMed].
    [Google Scholar]
  13. Etienne-Manneville S., Hall A.. ( 2002;). Rho GTPases in cell biology. Nature 420: 629–635 [CrossRef] [PubMed].
    [Google Scholar]
  14. Favoreel H.W., Van Minnebruggen G., Adriaensen D., Nauwynck H.J.. ( 2005;). Cytoskeletal rearrangements and cell extensions induced by the US3 kinase of an alphaherpesvirus are associated with enhanced spread. Proc Natl Acad Sci U S A 102: 8990–8995 [CrossRef] [PubMed].
    [Google Scholar]
  15. Finnen R.L., Roy B.B., Zhang H., Banfield B.W.. ( 2010;). Analysis of filamentous process induction and nuclear localization properties of the HSV-2 serine/threonine kinase Us3. Virology 397: 23–33 [CrossRef] [PubMed].
    [Google Scholar]
  16. Frampton A.R. Jr, Stolz D.B., Uchida H., Goins W.F., Cohen J.B., Glorioso J.C.. ( 2007;). Equine herpesvirus 1 enters cells by two different pathways, and infection requires the activation of the cellular kinase ROCK1. J Virol 81: 10879–10889 [CrossRef] [PubMed].
    [Google Scholar]
  17. Geenen K., Favoreel H.W., Olsen L., Enquist L.W., Nauwynck H.J.. ( 2005;). The pseudorabies virus US3 protein kinase possesses anti-apoptotic activity that protects cells from apoptosis during infection and after treatment with sorbitol or staurosporine. Virology 331: 144–150 [CrossRef] [PubMed].
    [Google Scholar]
  18. Hall A.. ( 1998;). Rho GTPases and the actin cytoskeleton. Science 279: 509–514 [CrossRef] [PubMed].
    [Google Scholar]
  19. Handa Y., Durkin C.H., Dodding M.P., Way M.. ( 2013;). Vaccinia virus F11 promotes viral spread by acting as a PDZ-containing scaffolding protein to bind myosin-9A and inhibit RhoA signaling. Cell Host Microbe 14: 51–62 [CrossRef] [PubMed].
    [Google Scholar]
  20. Jones S.E., Palmer T.M.. ( 2012;). Protein kinase A-mediated phosphorylation of RhoA on serine 188 triggers the rapid induction of a neuroendocrine-like phenotype in prostate cancer epithelial cells. Cell Signal 24: 1504–1514 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kozma R., Sarner S., Ahmed S., Lim L.. ( 1997;). Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol 17: 1201–1211 [PubMed].
    [Google Scholar]
  22. Ladelfa M.F., Kotsias F., Del Médico Zajac M.P., Van den Broeke C., Favoreel H., Romera S.A., Calamante G.. ( 2011;). Effect of the US3 protein of bovine herpesvirus 5 on the actin cytoskeleton and apoptosis. Vet Microbiol 153: 361–366 [CrossRef] [PubMed].
    [Google Scholar]
  23. Lang P., Gesbert F., Delespine-Carmagnat M., Stancou R., Pouchelet M., Bertoglio J.. ( 1996;). Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J 15: 510–519 [PubMed].
    [Google Scholar]
  24. Lapetina E.G., Lacal J.C., Reep B.R., Molina y Vedia L.. ( 1989;). A ras-related protein is phosphorylated and translocated by agonists that increase cAMP levels in human platelets. Proc Natl Acad Sci U S A 86: 3131–3134 [CrossRef] [PubMed].
    [Google Scholar]
  25. Leeuwen F.N., Kain H.E., Kammen R.A., Michiels F., Kranenburg O.W., Collard J.G.. ( 1997;). The guanine nucleotide exchange factor Tiam1 affects neuronal morphology: opposing roles for the small GTPases Rac and Rho. J Cell Biol 139: 797–807 [CrossRef] [PubMed].
    [Google Scholar]
  26. Loesing J.B., Di Fiore S., Ritter K., Fischer R., Kleines M.. ( 2009;). Epstein-Barr virus BDLF2-BMRF2 complex affects cellular morphology. J Gen Virol 90: 1440–1449 [CrossRef] [PubMed].
    [Google Scholar]
  27. Munger J., Roizman B.. ( 2001;). The US3 protein kinase of herpes simplex virus 1 mediates the posttranslational modification of BAD and prevents BAD-induced programmed cell death in the absence of other viral proteins. Proc Natl Acad Sci U S A 98: 10410–10415 [CrossRef] [PubMed].
    [Google Scholar]
  28. Nauwynck H.J., Pensaert M.B.. ( 1995;). Effect of specific antibodies on the cell-associated spread of pseudorabies virus in monolayers of different cell types. Arch Virol 140: 1137–1146 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ogg P.D., McDonell P.J., Ryckman B.J., Knudson C.M., Roller R.J.. ( 2004;). The HSV-1 Us3 protein kinase is sufficient to block apoptosis induced by overexpression of a variety of Bcl-2 family members. Virology 319: 212–224 [CrossRef] [PubMed].
    [Google Scholar]
  30. Parri M., Chiarugi P.. ( 2010;). Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 8: 23 [CrossRef] [PubMed].
    [Google Scholar]
  31. Pomeranz L.E., Reynolds A.E., Hengartner C.J.. ( 2005;). Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69: 462–500 [CrossRef] [PubMed].
    [Google Scholar]
  32. Quilliam L.A., Mueller H., Bohl B.P., Prossnitz V., Sklar L.A., Der C.J., Bokoch G.M.. ( 1991;). Rap1A is a substrate for cyclic AMP-dependent protein kinase in human neutrophils. J Immunol 147: 1628–1635 [PubMed].
    [Google Scholar]
  33. Rolli-Derkinderen M., Sauzeau V., Boyer L., Lemichez E., Baron C., Henrion D., Loirand G., Pacaud P.. ( 2005;). Phosphorylation of serine 188 protects RhoA from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells. Circ Res 96: 1152–1160 [CrossRef] [PubMed].
    [Google Scholar]
  34. Sander E.E., ten Klooster J.P., van Delft S., van der Kammen R.A., Collard J.G.. ( 1999;). Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol 147: 1009–1022 [CrossRef] [PubMed].
    [Google Scholar]
  35. Stergiou L., Bauer M., Mair W., Bausch-Fluck D., Drayman N., Wollscheid B., Oppenheim A., Pelkmans L.. ( 2013;). Integrin-mediated signaling induced by simian virus 40 leads to transient uncoupling of cortical actin and the plasma membrane. PLoS One 8: e55799 [CrossRef] [PubMed].
    [Google Scholar]
  36. Tkachenko E., Sabouri-Ghomi M., Pertz O., Kim C., Gutierrez E., Machacek M., Groisman A., Danuser G., Ginsberg M.H.. ( 2011;). Protein kinase A governs a RhoA-RhoGDI protrusion-retraction pacemaker in migrating cells. Nat Cell Biol 13: 660–667 [CrossRef] [PubMed].
    [Google Scholar]
  37. Valderrama F., Cordeiro J.V., Schleich S., Frischknecht F., Way M.. ( 2006;). Vaccinia virus-induced cell motility requires F11L-mediated inhibition of RhoA signaling. Science 311: 377–381 [CrossRef] [PubMed].
    [Google Scholar]
  38. Van Aelst L., D'Souza-Schorey C.. ( 1997;). Rho GTPases and signaling networks. Genes Dev 11: 2295–2322 [CrossRef] [PubMed].
    [Google Scholar]
  39. Van den Broeke C., Deruelle M., Nauwynck H.J., Coller K.E., Smith G.A., Van Doorsselaere J., Favoreel H.W.. ( 2009a;). The kinase activity of pseudorabies virus US3 is required for modulation of the actin cytoskeleton. Virology 385: 155–160 [CrossRef] [PubMed].
    [Google Scholar]
  40. Van den Broeke C., Radu M., Deruelle M., Nauwynck H., Hofmann C., Jaffer Z.M., Chernoff J., Favoreel H.W.. ( 2009b;). Alphaherpesvirus US3-mediated reorganization of the actin cytoskeleton is mediated by group A p21-activated kinases. Proc Natl Acad Sci U S A 106: 8707–8712 [CrossRef] [PubMed].
    [Google Scholar]
  41. Van den Broeke C., Jacob T., Favoreel H.W.. ( 2014;). Rho'ing in and out of cells: viral interactions with Rho GTPase signaling. Small GTPases 5: e28318 [CrossRef] [PubMed].
    [Google Scholar]
  42. Xie Y., Tan E.J., Wee S., Manser E., Lim L., Koh C.G.. ( 2008;). Functional interactions between phosphatase POPX2 and mDia modulate RhoA pathways. J Cell Sci 121: 514–521 [CrossRef] [PubMed].
    [Google Scholar]
  43. Yamaguchi Y., Katoh H., Yasui H., Mori K., Negishi M.. ( 2001;). RhoA inhibits the nerve growth factor-induced Rac1 activation through Rho-associated kinase-dependent pathway. J Biol Chem 276: 18977–18983 [CrossRef] [PubMed].
    [Google Scholar]
  44. Zhao Z.S., Manser E., Chen X.Q., Chong C., Leung T., Lim L.. ( 1998;). A conserved negative regulatory region in alphaPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol Cell Biol 18: 2153–2163 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000152
Loading
/content/journal/jgv/10.1099/vir.0.000152
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error