Viral evolution in HLA-B27-restricted CTL epitopes in human immunodeficiency virus type 1-infected individuals Free

Abstract

The HLA-B27 allele is over-represented among human immunodeficiency virus type 1-infected long-term non-progressors. In these patients, strong CTL responses targeting HLA-B27-restricted viral epitopes have been associated with long-term asymptomatic survival. Indeed, loss of control of viraemia in HLA-B27 patients has been associated with CTL escape at position 264 in the immunodominant KK10 epitope. This CTL escape mutation in the viral Gag protein has been associated with severe viral attenuation and may require the presence of compensatory mutations before emerging. Here, we studied sequence evolution within HLA-B27-restricted CTL epitopes in the viral Gag protein during the course of infection of seven HLA-B27-positive patients. Longitudinal sequences obtained at different time points around the time of AIDS diagnosis were obtained and analysed for the presence of mutations in epitopes restricted by HLA-B27, and for potential compensatory mutations. Sequence variations were observed in the HLA-B27-restricted CTL epitopes IK9 and DR11, and the immunodominant KK10 epitope. However, the presence of sequence variations in the HLA-B27-restricted CTL epitopes could not be associated with an increase in viraemia in the majority of the patients studied. Furthermore, we observed low genetic diversity in the region of the viral variants throughout the course of infection, which is indicative of low viral replication and corresponds to the low viral load observed in the HLA-B27-positive patients. These data indicated that control of viral replication can be maintained in HLA-B27-positive patients despite the emergence of viral mutations in HLA-B27-restricted epitopes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000148
2015-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/8/2372.html?itemId=/content/journal/jgv/10.1099/vir.0.000148&mimeType=html&fmt=ahah

References

  1. Ammaranond P., Zaunders J., Satchell C., van Bockel D., Cooper D.A., Kelleher A.D. 2005; A new variant cytotoxic T lymphocyte escape mutation in HLA-B27-positive individuals infected with HIV type 1. AIDS Res Hum Retroviruses 21:395–397 doi:10.1089/aid.2005.21.395 [PubMed] [CrossRef]
    [Google Scholar]
  2. Ammaranond P., van Bockel D.J., Petoumenos K., McMurchie M., Finlayson R., Middleton M.G., Davenport M.P., Venturi V., Suzuki K. other authors 2011; HIV immune escape at an immunodominant epitope in HLA-B*27-positive individuals predicts viral load outcome. J Immunol 186:479–488 doi:10.4049/jimmunol.0903227 [PubMed] [CrossRef]
    [Google Scholar]
  3. Appay V., Papagno L., Spina C.A., Hansasuta P., King A., Jones L., Ogg G.S., Little S., McMichael A.J. other authors 2002; Dynamics of T cell responses in HIV infection. J Immunol 168:3660–3666 doi:10.4049/jimmunol.168.7.3660 [PubMed] [CrossRef]
    [Google Scholar]
  4. Bailey J.R., Lassen K.G., Yang H.C., Quinn T.C., Ray S.C., Blankson J.N., Siliciano R.F. 2006a; Neutralizing antibodies do not mediate suppression of human immunodeficiency virus type 1 in elite suppressors or selection of plasma virus variants in patients on highly active antiretroviral therapy. J Virol 80:4758–4770 doi:10.1128/JVI.80.10.4758-4770.2006 [PubMed] [CrossRef]
    [Google Scholar]
  5. Bailey J.R., Williams T.M., Siliciano R.F., Blankson J.N. 2006b; Maintenance of viral suppression in HIV-1-infected HLA-B*57+ elite suppressors despite CTL escape mutations. J Exp Med 203:1357–1369 doi:10.1084/jem.20052319 [PubMed] [CrossRef]
    [Google Scholar]
  6. Carrington M., O'Brien S.J. 2003; The influence of HLA genotype on AIDS. Annu Rev Med 54:535–551 doi:10.1146/annurev.med.54.101601.152346 [PubMed] [CrossRef]
    [Google Scholar]
  7. Centers for Disease Control 1992; 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Recomm Rep 41:(RR-17)1–19[PubMed]
    [Google Scholar]
  8. Cornelissen M., Hoogland F.M., Back N.K.T., Jurriaans S., Zorgdrager F., Bakker M., Brinkman K., Prins M., van der Kuyl A.C. 2009; Multiple transmissions of a stable human leucocyte antigen-B27 cytotoxic T-cell-escape strain of HIV-1 in The Netherlands. AIDS 23:1495–1500 doi:10.1097/QAD.0b013e32832d9267 [PubMed] [CrossRef]
    [Google Scholar]
  9. Deeks S.G., Walker B.D. 2007; Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity 27:406–416 doi:10.1016/j.immuni.2007.08.010 [PubMed] [CrossRef]
    [Google Scholar]
  10. Durand C.M., O'Connell K.A., Apuzzo L.G., Langan S.J., Imteyaz H., Ahonkhai A.A., Ceccato C.M., Williams T.M., Margolick J.B., Blankson J.N. 2010; HIV-1 Gag evolution in recently infected human leukocyte antigen-B*57 patients with low-level viremia. AIDS 24:2405–2408[PubMed]
    [Google Scholar]
  11. Edo-Matas D., Lemey P., Tom J.A., Serna-Bolea C., van den Blink A.E., van't Wout A.B., Schuitemaker H., Suchard M.A. 2011; Impact of CCR5delta32 host genetic background and disease progression on HIV-1 intrahost evolutionary processes: efficient hypothesis testing through hierarchical phylogenetic models. Mol Biol Evol 28:1605–1616 doi:10.1093/molbev/msq326 [PubMed] [CrossRef]
    [Google Scholar]
  12. Feeney M.E., Tang Y., Roosevelt K.A., Leslie A.J., McIntosh K., Karthas N., Walker B.D., Goulder P.J. 2004; Immune escape precedes breakthrough human immunodeficiency virus type 1 viremia and broadening of the cytotoxic T-lymphocyte response in an HLA-B27-positive long-term-nonprogressing child. J Virol 78:8927–8930 doi:10.1128/JVI.78.16.8927-8930.2004 [PubMed] [CrossRef]
    [Google Scholar]
  13. Gao X., Bashirova A., Iversen A.K., Phair J., Goedert J.J., Buchbinder S., Hoots K., Vlahov D., Altfeld M. other authors 2005; AIDS restriction HLA allotypes target distinct intervals of HIV-1 pathogenesis. Nat Med 11:1290–1292 doi:10.1038/nm1333 [PubMed] [CrossRef]
    [Google Scholar]
  14. Goonetilleke N., Liu M.K., Salazar-Gonzalez J.F., Ferrari G., Giorgi E., Ganusov V.V., Keele B.F., Learn G.H., Turnbull E.L. other authors 2009; The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J Exp Med 206:1253–1272 doi:10.1084/jem.20090365 [PubMed] [CrossRef]
    [Google Scholar]
  15. Goulder P.J.R., Phillips R.E., Colbert R.A., McAdam S., Ogg G., Nowak M.A., Giangrande P., Luzzi G., Morgana B. other authors 1997; Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med 3:212–217 doi:10.1038/nm0297-212 [PubMed] [CrossRef]
    [Google Scholar]
  16. Kaslow R.A., Carrington M., Apple R., Park L., Muñoz A., Saah A.J., Goedert J.J., Winkler C., O'Brien S.J. other authors 1996; Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat Med 2:405–411 doi:10.1038/nm0496-405 [PubMed] [CrossRef]
    [Google Scholar]
  17. Kelleher A.D., Long C., Holmes E.C., Allen R.L., Wilson J., Conlon C., Workman C., Shaunak S., Olson K. other authors 2001; Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses. J Exp Med 193:375–386 doi:10.1084/jem.193.3.375 [PubMed] [CrossRef]
    [Google Scholar]
  18. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 doi:10.1007/BF01731581 [PubMed] [CrossRef]
    [Google Scholar]
  19. Korber B. 2000; Computational analysis of HIV molecular sequences. In HIV Signature and Sequence Variation Analysis pp. 55–72 Edited by Rodrigo A. G., Learn G. H. Dordrecht: Kluwer;
    [Google Scholar]
  20. Lambotte O., Boufassa F., Madec Y., Nguyen A., Goujard C., Meyer L., Rouzioux C., Venet A., Delfraissy J.F. other authors 2005; HIV controllers: a homogeneous group of HIV-1-infected patients with spontaneous control of viral replication. Clin Infect Dis 41:1053–1056 doi:10.1086/433188 [PubMed] [CrossRef]
    [Google Scholar]
  21. Leslie A.J., Pfafferott K.J., Chetty P., Draenert R., Addo M.M., Feeney M., Tang Y., Holmes E.C., Allen T. other authors 2004; HIV evolution: CTL escape mutation and reversion after transmission. Nat Med 10:282–289 doi:10.1038/nm992 [PubMed] [CrossRef]
    [Google Scholar]
  22. Lichterfeld M., Kavanagh D.G., Williams K.L., Moza B., Mui S.K., Miura T., Sivamurthy R., Allgaier R., Pereyra F. other authors 2007; A viral CTL escape mutation leading to immunoglobulin-like transcript 4-mediated functional inhibition of myelomonocytic cells. J Exp Med 204:2813–2824 doi:10.1084/jem.20061865 [PubMed] [CrossRef]
    [Google Scholar]
  23. Martinez-Picado J., Prado J.G., Fry E.E., Pfafferott K., Leslie A., Chetty S., Thobakgale C., Honeyborne I., Crawford H. other authors 2006; Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. J Virol 80:3617–3623 doi:10.1128/JVI.80.7.3617-3623.2006 [PubMed] [CrossRef]
    [Google Scholar]
  24. Nietfield W., Bauer M., Fevrier M., Maier R., Holzwarth B., Frank R., Maier B., Riviere Y., Meyerhans A. 1995; Sequence constraints and recognition by CTL of an HLA-B27-restricted HIV-1 gag epitope. J Immunol 154:2189–2197[PubMed]
    [Google Scholar]
  25. O'Connell K.A., Brennan T.P., Bailey J.R., Ray S.C., Siliciano R.F., Blankson J.N. 2010a; Control of HIV-1 in elite suppressors despite ongoing replication and evolution in plasma virus. J Virol 84:7018–7028 doi:10.1128/JVI.00548-10 [PubMed] [CrossRef]
    [Google Scholar]
  26. O'Connell K.A., Pelz R.K., Dinoso J.B., Dunlop E., Paik-Tesch J., Williams T.M., Blankson J.N. 2010b; Prolonged control of an HIV type 1 escape variant following treatment interruption in an HLA-B*27-positive patient. AIDS Res Hum Retroviruses 26:1307–1311 doi:10.1089/aid.2010.0135 [PubMed] [CrossRef]
    [Google Scholar]
  27. Schneidewind A., Brockman M.A., Yang R., Adam R.I., Li B., Le Gall S., Rinaldo C.R., Craggs S.L., Allgaier R.L. other authors 2007; Escape from the dominant HLA-B27-restricted cytotoxic T-lymphocyte response in Gag is associated with a dramatic reduction in human immunodeficiency virus type 1 replication. J Virol 81:12382–12393 doi:10.1128/JVI.01543-07 [PubMed] [CrossRef]
    [Google Scholar]
  28. Schneidewind A., Brockman M.A., Sidney J., Wang Y.E., Chen H., Suscovich T.J., Li B., Adam R.I., Allgaier R.L. other authors 2008; Structural and functional constraints limit options for cytotoxic T-lymphocyte escape in the immunodominant HLA-B27-restricted epitope in human immunodeficiency virus type 1 capsid. J Virol 82:5594–5605 doi:10.1128/JVI.02356-07 [PubMed] [CrossRef]
    [Google Scholar]
  29. Tenzer S., Peters B., Bulik S., Schoor O., Lemmel C., Schatz M.M., Kloetzel P.M., Rammensee H.G., Schild H., Holzhütter H.G. 2005; Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol Life Sci 62:1025–1037 doi:10.1007/s00018-005-4528-2 [PubMed] [CrossRef]
    [Google Scholar]
  30. The International HIV Controllers Study 2010; The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 330:1551–1557 doi:10.1126/science.1195271 [PubMed] [CrossRef]
    [Google Scholar]
  31. Van't Wout A.B., Blaak H., Ran L.J., Brouwer M., Kuiken C., Schuitemaker H. 1998; Evolution of syncytium-inducing and non-syncytium-inducing biological virus clones in relation to replication kinetics during the course of human immunodeficiency virus type 1 infection. J Virol 72:5099–5107[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000148
Loading
/content/journal/jgv/10.1099/vir.0.000148
Loading

Data & Media loading...

Most cited Most Cited RSS feed