1887

Abstract

To date, proteomic studies have been performed on occlusion-derived viruses (ODVs) from five members of the family , genus , but only a single member of the genus (). In this study, LC-MS/MS was used to analyse the ODV proteins of (ClanGV), another member of the genus . The results indicated that 73 proteins, including the products of 27 baculovirus core genes, were present in ClanGV ODVs. This is the largest number of ODV proteins identified in baculoviruses to date. To the best of our knowledge, 24 of these proteins were newly identified as ODV-associated proteins. Twelve of the proteins were shared by all seven of the other baculoviruses that have been analysed by proteomic techniques, including P49, PIF-2, ODV-EC43, P74, P6.9, P33, VP39, ODV-EC27, VP91, GP41, VLF-1 and VP1054. ClanGV shared between 20 and 36 ODV proteins with each of the other six baculoviruses that have been analysed by proteomics. Ten proteins were identified only as ODV components of ClanGV and PrGV: Clan22, Clan27, Clan69, Clan83, Clan84, Clan90, Clan116, Clan94, FGF-3 and ME53, the first seven of which were encoded by betabaculovirus-specific genes. These findings may provide novel insights into baculovirus structure as well as reveal similarities and differences between alphabaculoviruses and betabaculoviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000146
2015-08-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/8/2394.html?itemId=/content/journal/jgv/10.1099/vir.0.000146&mimeType=html&fmt=ahah

References

  1. Alfonso V., Maroniche G.A., Reca S.R., López M.G., del Vas M., Taboga O.. ( 2012;). AcMNPV core gene ac109 is required for budded virion transport to the nucleus and for occlusion of viral progeny. PLoS One 7: e46146 [CrossRef] [PubMed].
    [Google Scholar]
  2. Belyavskyi M., Braunagel S.C., Summers M.D.. ( 1998;). The structural protein ODV-EC27 of Autographa californica nucleopolyhedrovirus is a multifunctional viral cyclin. Proc Natl Acad Sci U S A 95: 11205–11210 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bilimoria S.L.. ( 1991;). The biology of nuclear polyhedrosis viruses. . In Viruses of Invertebrates, pp. 1–72. Edited by Kurstak E.. New York: Marcel Dekker;.
    [Google Scholar]
  4. Braconi C.T., Ardisson-Araújo D.M., Paes Leme A.F., Oliveira J.V., Pauletti B.A., Garcia-Maruniak A., Ribeiro B.M., Maruniak J.E., Zanotto P.M.. ( 2014;). Proteomic analyses of baculovirus Anticarsia gemmatalis multiple nucleopolyhedrovirus budded and occluded virus. J Gen Virol 95: 980–989 [CrossRef] [PubMed].
    [Google Scholar]
  5. Braunagel S.C., Guidry P.A., Rosas-Acosta G., Engelking L., Summers M.D.. ( 2001;). Identification of BV/ODV-C42, an Autographa californica nucleopolyhedrovirus orf101-encoded structural protein detected in infected-cell complexes with ODV-EC27 and p78/83. J Virol 75: 12331–12338 [CrossRef] [PubMed].
    [Google Scholar]
  6. Braunagel S.C., Russell W.K., Rosas-Acosta G., Russell D.H., Summers M.D.. ( 2003;). Determination of the protein composition of the occlusion-derived virus of Autographa californica nucleopolyhedrovirus. Proc Natl Acad Sci U S A 100: 9797–9802 [CrossRef] [PubMed].
    [Google Scholar]
  7. Carbonell L.F., Miller L.K.. ( 1987;). Baculovirus interaction with nontarget organisms: a virus-borne reporter gene is not expressed in two mammalian cell lines. Appl Environ Microbio 53: 1412–1417 [PubMed].
    [Google Scholar]
  8. Cohen D.P.A., Marek M., Davies B.G., Vlak J.M., van Oers M.M.. ( 2009;). Encyclopedia of Autographa californica nucleopolyhedrovirus genes. Virol Sin 24: 359–414 [CrossRef].
    [Google Scholar]
  9. Condreay J.P., Kost T.A.. ( 2007;). Baculovirus expression vectors for insect and mammalian cells. Curr Drug Targets 8: 1126–1131 [CrossRef] [PubMed].
    [Google Scholar]
  10. de Jong J., Theilmann D.A., Arif B.M., Krell P.J.. ( 2011;). Immediate-early protein ME53 forms foci and colocalizes with GP64 and the major capsid protein VP39 at the cell membranes of Autographa californica multiple nucleopolyhedrovirus-infected cells. J Virol 85: 9696–9707 [CrossRef] [PubMed].
    [Google Scholar]
  11. Deng F., Wang R., Fang M., Jiang Y., Xu X., Wang H., Chen X., Arif B.M., Guo L., other authors. ( 2007;). Proteomics analysis of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus identified two new occlusion-derived virus-associated proteins, HA44 and HA100. J Virol 81: 9377–9385 [CrossRef] [PubMed].
    [Google Scholar]
  12. Du E., Yao L., Xu H., Lu S., Qi Y.. ( 2007;). Function and oligomerization study of the leucine zipper-like domain in P13 from Leucania separata multiple nuclear polyhedrosis virus. J Biochem Mol Biol 40: 232–238 [CrossRef] [PubMed].
    [Google Scholar]
  13. Escasa S.R., Lauzon H.A., Mathur A.C., Krell P.J., Arif B.M.. ( 2006;). Sequence analysis of the Choristoneura occidentalis granulovirus genome. J Gen Virol 87: 1917–1933 [CrossRef] [PubMed].
    [Google Scholar]
  14. Fang M., Wang H., Wang H., Yuan L., Chen X., Vlak J.M., Hu Z.. ( 2003;). Open reading frame 94 of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus encodes a novel conserved occlusion-derived virion protein, ODV-EC43. J Gen Virol 84: 3021–3027 [CrossRef] [PubMed].
    [Google Scholar]
  15. Fang M., Nie Y., Wang Q., Deng F., Wang R., Wang H., Wang H., Vlak J.M., Chen X., Hu Z.. ( 2006;). Open reading frame 132 of Helicoverpa armigera nucleopolyhedrovirus encodes a functional per os infectivity factor (PIF-2). J Gen Virol 87: 2563–2569 [CrossRef] [PubMed].
    [Google Scholar]
  16. Fang M., Nie Y., Theilmann D.A.. ( 2009;). Deletion of the AcMNPV core gene ac109 results in budded virions that are non-infectious. Virology 389: 66–74 [CrossRef] [PubMed].
    [Google Scholar]
  17. Garavaglia M.J., Miele S.A., Iserte J.A., Belaich M.N., Ghiringhelli P.D.. ( 2012;). The ac53, ac78 ac101, and ac103 genes are newly discovered core genes in the family Baculoviridae. J Virol 86: 12069–12079 [CrossRef] [PubMed].
    [Google Scholar]
  18. Gauthier L., Cousserans F., Veyrunes J.C., Bergoin M.. ( 1995;). The Melolontha melolontha entomopoxvirus (MmEPV) fusolin is related to the fusolins of lepidopteran EPVs and to the 37K baculovirus glycoprotein. Virology 208: 427–436 [CrossRef] [PubMed].
    [Google Scholar]
  19. Hawtin R.E., Zarkowska T., Arnold K., Thomas C.J., Gooday G.W., King L.A., Kuzio J.A., Possee R.D.. ( 1997;). Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology 238: 243–253 [CrossRef] [PubMed].
    [Google Scholar]
  20. Hom L.G., Ohkawa T., Trudeau D., Volkman L.E.. ( 2002;). Autographa californica M nucleopolyhedrovirus ProV-CATH is activated during infected cell death. Virology 296: 212–218 [CrossRef] [PubMed].
    [Google Scholar]
  21. Hou D., Zhang L., Deng F., Fang W., Wang R., Liu X., Guo L., Rayner S., Chen X., other authors. ( 2013;). Comparative proteomics reveal fundamental structural and functional differences between the two progeny phenotypes of a baculovirus. J Virol 87: 829–839 [CrossRef] [PubMed].
    [Google Scholar]
  22. Hu Y., Li L.L.. ( 2014;). The p35 ie1 of Autographa californica multiple nucleopolyhedrovirus could rescue late gene expression of Plutella xylostella granulovirus in nonpermissive cell lines. Virus Genes 48: 343–355 [CrossRef] [PubMed].
    [Google Scholar]
  23. Huang H., Wang M., Deng F., Wang H., Hu Z.. ( 2012;). ORF85 of HearNPV encodes the per os infectivity factor 4 (PIF4) and is essential for the formation of the PIF complex. Virology 427: 217–223 [CrossRef] [PubMed].
    [Google Scholar]
  24. Inceoglu A.B., Kamita S.G., Hinton A.C., Huang Q., Severson T.F., Kang K., Hammock B.D.. ( 2001;). Recombinant baculoviruses for insect control. Pest Manag Sci 57: 981–987 [CrossRef] [PubMed].
    [Google Scholar]
  25. Jehle J.A., Blissard G.W., Bonning B.C., Cory J.S., Herniou E.A., Rohrmann G.F., Theilmann D.A., Thiem S.M., Vlak J.M.. ( 2006;). On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol 151: 1257–1266 [CrossRef] [PubMed].
    [Google Scholar]
  26. Li Y., Wang J., Deng R., Zhang Q., Yang K., Wang X.. ( 2005;). vlf-1 deletion brought AcMNPV to defect in nucleocapsid formation. Virus Genes 31: 275–284 [CrossRef] [PubMed].
    [Google Scholar]
  27. Liang Z., Zhang X., Yin X., Cao S., Xu F.. ( 2011;). Genomic sequencing and analysis of Clostera anachoreta granulovirus. Arch Virol 156: 1185–1198 [CrossRef] [PubMed].
    [Google Scholar]
  28. Liang Z., Zhang X., Yin X., Song X., Shao X., Wang L.. ( 2013;). Comparative analysis of the genomes of Clostera anastomosis (L.) granulovirus and Clostera anachoreta granulovirus. Arch Virol 158: 2109–2114 [CrossRef] [PubMed].
    [Google Scholar]
  29. Lima A.A., Aragão C.W., de Castro M.E., Oliveira J.V., Sosa Gómez D.R., Ribeiro B.M.. ( 2013;). A recombinant Anticarsia gemmatalis MNPV harboring chiA and v-cath genes from Choristoneura fumiferana defective NPV induce host liquefaction and increased insecticidal activity. PLoS One 8: e74592 [CrossRef] [PubMed].
    [Google Scholar]
  30. Liu X., Chen K., Cai K., Yao Q.. ( 2008;). Determination of protein composition and host-derived proteins of Bombyx mori nucleopolyhedrovirus by 2-dimensional electrophoresis and mass spectrometry. Intervirology 51: 369–376 [PubMed].
    [Google Scholar]
  31. Liu X., Ma X., Lei C., Xiao Y., Zhang Z., Sun X.. ( 2011;). Synergistic effects of Cydia pomonella granulovirus GP37 on the infectivity of nucleopolyhedroviruses and the lethality of Bacillus thuringiensis. Arch Virol 156: 1707–1715 [CrossRef] [PubMed].
    [Google Scholar]
  32. Liu X., Zhao H., Fang Z., Yuan M., Yang K., Pang Y.. ( 2012;). Distribution and phosphorylation of the basic protein P6.9 of Autographa californica nucleopolyhedrovirus. J Virol 86: 12217–12227 [CrossRef] [PubMed].
    [Google Scholar]
  33. Lu N., Du E., Liu Y., Qiao H., Yao L., Pan Z., Lu S., Qi Y.. ( 2012;). p13 from group II baculoviruses is a killing-associated gene. BMB Rep 45: 730–735 [CrossRef] [PubMed].
    [Google Scholar]
  34. Marek M., Romier C., Galibert L., Merten O.W., van Oers M.M., Hou D., Zhang L., Deng F., Fang W., Wang R., Liu X., Guo L., Rayner S., Chen X., other authors. ( 2013;). Baculovirus VP1054 is an acquired cellular PURα, a nucleic acid-binding protein specific for GGN repeats. J Virol 87: 8465–8480 [CrossRef] [PubMed].
    [Google Scholar]
  35. Mikhailov V.S., Rohrmann G.F.. ( 2002;). Binding of the baculovirus very late expression factor 1 (VLF-1) to different DNA structures. BMC Mol Biol 3: 14 [CrossRef] [PubMed].
    [Google Scholar]
  36. Moscardi F.. ( 1999;). Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44: 257–289 [CrossRef] [PubMed].
    [Google Scholar]
  37. Nie Y., Fang M., Erlandson M.A., Theilmann D.A.. ( 2012;). Analysis of the Autographa californica multiple nucleopolyhedrovirus overlapping gene pair lef3 ac68 reveals that AC68 is a per os infectivity factor and that LEF3 is critical, but not essential, for virus replication. J Virol 86: 3985–3994 [CrossRef] [PubMed].
    [Google Scholar]
  38. Oliveira J.V., Wolff J.L., Garcia-Maruniak A., Ribeiro B.M., de Castro M.E., de Souza M.L., Moscardi F., Maruniak J.E., Zanotto P.M.. ( 2006;). Genome of the most widely used viral biopesticide: Anticarsia gemmatalis multiple nucleopolyhedrovirus. J Gen Virol 87: 3233–3250 [CrossRef] [PubMed].
    [Google Scholar]
  39. Olszewski J., Miller L.K.. ( 1997;). A role for baculovirus GP41 in budded virus production. Virology 233: 292–301 [CrossRef] [PubMed].
    [Google Scholar]
  40. Pan L., Li Z., Gong Y., Yu M., Yang K., Pang Y.. ( 2005;). Characterization of gp41 gene of Spodoptera litura multicapsid nucleopolyhedrovirus. Virus Res 110: 73–79 [CrossRef] [PubMed].
    [Google Scholar]
  41. Pearson M.N., Russell R.L., Rohrmann G.F., Beaudreau G.S.. ( 1988;). p39, a major baculovirus structural protein: immunocytochemical characterization and genetic location. Virology 167: 407–413 [PubMed].
    [Google Scholar]
  42. Peng K., van Oers M.M., Hu Z., van Lent J.W., Vlak J.M.. ( 2010;). Baculovirus per os infectivity factors form a complex on the surface of occlusion-derived virus. J Virol 84: 9497–9504 [CrossRef] [PubMed].
    [Google Scholar]
  43. Perera O., Green T.B., Stevens S.M. Jr, White S., Becnel J.J.. ( 2007;). Proteins associated with Culex nigripalpus nucleopolyhedrovirus occluded virions. J Virol 81: 4585–4590 [CrossRef] [PubMed].
    [Google Scholar]
  44. Russell R.L., Rohrmann G.F.. ( 1997;). Characterization of P91, a protein associated with virions of an Orgyia pseudotsugata baculovirus. Virology 233: 210–223 [CrossRef] [PubMed].
    [Google Scholar]
  45. Slack J., Arif B.M.. ( 2007;). The baculoviruses occlusion-derived virus: virion structure and function. Adv Virus Res 69: 99–165 [CrossRef] [PubMed].
    [Google Scholar]
  46. Slack J.M., Ribeiro B.M., de Souza M.L.. ( 2004;). The gp64 locus of Anticarsia gemmatalis multicapsid nucleopolyhedrovirus contains a 3′ repair exonuclease homologue and lacks v-cath ChiA genes. J Gen Virol 85: 211–219 [CrossRef] [PubMed].
    [Google Scholar]
  47. Song J., Wang R., Deng F., Wang H., Hu Z.. ( 2008;). Functional studies of per os infectivity factors of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus. J Gen Virol 89: 2331–2338 [CrossRef] [PubMed].
    [Google Scholar]
  48. Sparks W.O., Harrison R.L., Bonning B.C.. ( 2011;). Autographa californica multiple nucleopolyhedrovirus ODV-E56 is a per os infectivity factor, but is not essential for binding and fusion of occlusion-derived virus to the host midgut. Virology 409: 69–76 [CrossRef] [PubMed].
    [Google Scholar]
  49. Toprak U., Harris S., Baldwin D., Theilmann D., Gillott C., Hegedus D.D., Erlandson M.A.. ( 2012;). Role of enhancin in Mamestra configurata nucleopolyhedrovirus virulence: selective degradation of host peritrophic matrix proteins. J Gen Virol 93: 744–753 [CrossRef] [PubMed].
    [Google Scholar]
  50. van Oers M.M., Vlak J.M.. ( 2007;). Baculovirus genomics. Curr Drug Targets 8: 1051–1068 [CrossRef] [PubMed].
    [Google Scholar]
  51. Vanarsdall A.L., Okano K., Rohrmann G.F.. ( 2004;). Characterization of a baculovirus with a deletion of vlf-1. Virology 326: 191–201 [CrossRef] [PubMed].
    [Google Scholar]
  52. Vanarsdall A.L., Mikhailov V.S., Rohrmann G.F.. ( 2007;). Characterization of a baculovirus lacking the DBP (DNA-binding protein) gene. Virology 364: 475–485 [CrossRef] [PubMed].
    [Google Scholar]
  53. Vaux D.L., Strasser A.. ( 1996;). The molecular biology of apoptosis. Proc Natl Acad Sci U S A 93: 2239–2244 [CrossRef] [PubMed].
    [Google Scholar]
  54. Wang P., Granados R.R.. ( 1997;). An intestinal mucin is the target substrate for a baculovirus enhancin. Proc Natl Acad Sci U S A 94: 6977–6982 [CrossRef] [PubMed].
    [Google Scholar]
  55. Wang J.W., Qi Y.P., Huang Y.X., Li S.D.. ( 1995;). Nucleotide sequence of a 1446 base pair SalI fragment and structure of a novel early gene of Leucania separata nuclear polyhedrosis virus. Arch Virol 140: 2283–2291 [CrossRef] [PubMed].
    [Google Scholar]
  56. Wang R., Deng F., Hou D., Zhao Y., Guo L., Wang H., Hu Z.. ( 2010;). Proteomics of the Autographa californica nucleopolyhedrovirus budded virions. J Virol 84: 7233–7242 [CrossRef] [PubMed].
    [Google Scholar]
  57. Wang X.F., Zhang B.Q., Xu H.J., Cui Y.J., Xu Y.P., Zhang M.J., Han Y.S., Lee Y.S., Bao Y.Y., Zhang C.X.. ( 2011;). ODV-associated proteins of the Pieris rapae granulovirus. J Proteome Res 10: 2817–2827 [CrossRef] [PubMed].
    [Google Scholar]
  58. Wu W., Clem R.J., Rohrmann G.F., Passarelli A.L.. ( 2013a;). The baculovirus sulfhydryl oxidase Ac92 (P33) interacts with the Spodoptera frugiperda P53 protein and oxidizes it in vitro. Virology 447: 197–207 [CrossRef] [PubMed].
    [Google Scholar]
  59. Wu Y., Wu Y., Wu Y., Tang H., Wu H., Zhang G., Wang W.. ( 2013b;). Screening of candidate proteins interacting with IE-2 of Bombyx mori nucleopolyhedrovirus. Mol Biol Rep 40: 5797–5804 [CrossRef] [PubMed].
    [Google Scholar]
  60. Xiang X., Chen L., Hu X., Yu S., Yang R., Wu X.. ( 2011;). Autographa californica multiple nucleopolyhedrovirus odv-e66 is an essential gene required for oral infectivity. Virus Res 158: 72–78 [CrossRef] [PubMed].
    [Google Scholar]
  61. Xu F., Ince I.A., Boeren S., Vlak J.M., van Oers M.M.. ( 2011;). Protein composition of the occlusion derived virus of Chrysodeixis chalcites nucleopolyhedrovirus. Virus Res 158: 1–7 [CrossRef] [PubMed].
    [Google Scholar]
  62. Yang S., Miller L.K.. ( 1998;). Expression and mutational analysis of the baculovirus very late factor 1 (vlf-1) gene. Virology 245: 99–109 [CrossRef] [PubMed].
    [Google Scholar]
  63. Yu Q., Lin T., Feng G., Yang K., Pang Y.. ( 2008;). Functional analysis of the putative antiapoptotic genes. p49 and iap4, of Spodoptera litura nucleopolyhedrovirus with RNAi. J Gen Virol 89: 1873–1880 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000146
Loading
/content/journal/jgv/10.1099/vir.0.000146
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error