Subcapsular sinus macrophages limit acute gammaherpesvirus dissemination Open Access

Abstract

Lymphocyte proliferation, mobility and longevity make them prime targets for virus infection. Myeloid cells that process and present environmental antigens to lymphocytes are consequently an important line of defence. Subcapsular sinus macrophages (SSMs) filter the afferent lymph and communicate with B-cells. How they interact with B-cell-tropic viruses is unknown. We analysed their encounter with murid herpesvirus-4 (MuHV-4), an experimentally accessible gammaherpesvirus related to Kaposi's sarcoma-associated herpesvirus. MuHV-4 disseminated via lymph nodes, and intranasally or subcutaneously inoculated virions readily infected SSMs. However, this infection was poorly productive. SSM depletion with clodronate-loaded liposomes or with diphtheria toxin in CD169–diphtheria toxin receptor transgenic mice increased B-cell infection and hastened virus spread to the spleen. Dendritic cells provided the main route to B-cells, and SSMs slowed host colonization, apparently by absorbing virions non-productively from the afferent lymph.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000140
2015-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/8/2314.html?itemId=/content/journal/jgv/10.1099/vir.0.000140&mimeType=html&fmt=ahah

References

  1. Adler H., Messerle M., Wagner M., Koszinowski U.H. 2000; Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74:6964–6974 [View Article][PubMed]
    [Google Scholar]
  2. Asano K., Nabeyama A., Miyake Y., Qiu C.H., Kurita A., Tomura M., Kanagawa O., Fujii S., Tanaka M. 2011; CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity 34:85–95 [View Article][PubMed]
    [Google Scholar]
  3. Barton E., Mandal P., Speck S.H. 2011; Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol 29:351–397 [View Article][PubMed]
    [Google Scholar]
  4. Braun A., Worbs T., Moschovakis G.L., Halle S., Hoffmann K., Bölter J., Münk A., Förster R. 2011; Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nat Immunol 12:879–887 [View Article][PubMed]
    [Google Scholar]
  5. Carrasco Y.R., Batista F.D. 2007; B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27:160–171 [View Article][PubMed]
    [Google Scholar]
  6. Caton M.L., Smith-Raska M.R., Reizis B. 2007; Notch-RBP-J signaling controls the homeostasis of CD8−  dendritic cells in the spleen. J Exp Med 204:1653–1664[PubMed]
    [Google Scholar]
  7. Cella M., Sallusto F., Lanzavecchia A. 1997; Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 9:10–16 [View Article][PubMed]
    [Google Scholar]
  8. Clausen B.E., Burkhardt C., Reith W., Renkawitz R., Förster I. 1999; Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8:265–277 [View Article][PubMed]
    [Google Scholar]
  9. Collins C.M., Boss J.M., Speck S.H. 2009; Identification of infected B-cell populations by using a recombinant murine gammaherpesvirus 68 expressing a fluorescent protein. J Virol 83:6484–6493 [View Article][PubMed]
    [Google Scholar]
  10. Cornacoff J.B., Hebert L.A., Smead W.L., VanAman M.E., Birmingham D.J., Waxman F.J. 1983; Primate erythrocyte-immune complex-clearing mechanism. J Clin Invest 71:236–247 [View Article][PubMed]
    [Google Scholar]
  11. de Lima B.D., May J.S., Stevenson P.G. 2004; Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo . J Virol 78:5103–5112 [View Article][PubMed]
    [Google Scholar]
  12. Ehlers B., Dural G., Yasmum N., Lembo T., de Thoisy B., Ryser-Degiorgis M.P., Ulrich R.G., McGeoch D.J. 2008; Novel mammalian herpesviruses and lineages within the Gammaherpesvirinae: cospeciation and interspecies transfer. J Virol 82:3509–3516 [View Article][PubMed]
    [Google Scholar]
  13. Evans A.G., Moser J.M., Krug L.T., Pozharskaya V., Mora A.L., Speck S.H. 2008; A gammaherpesvirus-secreted activator of Vβ4+ CD8+T cells regulates chronic infection and immunopathology. J Exp Med 205:669–684 [View Article][PubMed]
    [Google Scholar]
  14. François S., Vidick S., Sarlet M., Michaux J., Koteja P., Desmecht D., Stevenson P.G., Vanderplasschen A., Gillet L. 2010; Comparative study of murid gammaherpesvirus 4 infection in mice and in a natural host, bank voles. J Gen Virol 91:2553–2563 [View Article][PubMed]
    [Google Scholar]
  15. François S., Vidick S., Sarlet M., Desmecht D., Drion P., Stevenson P.G., Vanderplasschen A., Gillet L. 2013; Illumination of murine gammaherpesvirus-68 cycle reveals a sexual transmission route from females to males in laboratory mice. PLoS Pathog 9:e1003292 doi:10.1371/journal.ppat.1003292 [PubMed] [CrossRef]
    [Google Scholar]
  16. Frederico B., Milho R., May J.S., Gillet L., Stevenson P.G. 2012; Myeloid infection links epithelial and B cell tropisms of murid herpesvirus-4. PLoS Pathog 8:e1002935 doi:10.1371/journal.ppat.1002935 [PubMed] [CrossRef]
    [Google Scholar]
  17. Frederico B., Chao B., May J.S., Belz G.T., Stevenson P.G. 2014; A murid gamma-herpesviruses exploits normal splenic immune communication routes for systemic spread. Cell Host Microbe 15:457–470 doi:10.1016/j.chom.2014.03.010 [PubMed] [CrossRef]
    [Google Scholar]
  18. Garcia Z., Lemaître F., van Rooijen N., Albert M.L., Levy Y., Schwartz O., Bousso P. 2012; Subcapsular sinus macrophages promote NK cell accumulation and activation in response to lymph-borne viral particles. Blood 120:4744–4750 [View Article][PubMed]
    [Google Scholar]
  19. Gaspar M., Gill M.B., Lösing J.B., May J.S., Stevenson P.G. 2008; Multiple functions for ORF75c in murid herpesvirus-4 infection. PLoS One 3:e2781 [View Article][PubMed]
    [Google Scholar]
  20. Gaspar M., May J.S., Sukla S., Frederico B., Gill M.B., Smith C.M., Belz G.T., Stevenson P.G. 2011; Murid herpesvirus-4 exploits dendritic cells to infect B cells. PLoS Pathog 7:e1002346 [View Article][PubMed]
    [Google Scholar]
  21. Gray E.E., Cyster J.G. 2012; Lymph node macrophages. J Innate Immun 4:424–436 [View Article][PubMed]
    [Google Scholar]
  22. Habison A.C., Beauchemin C., Simas J.P., Usherwood E.J., Kaye K.M. 2012; Murine gammaherpesvirus 68 LANA acts on terminal repeat DNA to mediate episome persistence. J Virol 86:11863–11876 [View Article][PubMed]
    [Google Scholar]
  23. Hamano S., Yoshida H., Takimoto H., Sonoda K., Osada K., He X., Minamishima Y., Kimura G., Nomoto K. 1998; Role of macrophages in acute murine cytomegalovirus infection. Microbiol Immunol 42:607–616 [View Article][PubMed]
    [Google Scholar]
  24. Hickman H.D., Takeda K., Skon C.N., Murray F.R., Hensley S.E., Loomis J., Barber G.N., Bennink J.R., Yewdell J.W. 2008; Direct priming of antiviral CD8+T cells in the peripheral interfollicular region of lymph nodes. Nat Immunol 9:155–165 [View Article][PubMed]
    [Google Scholar]
  25. Honke N., Shaabani N., Cadeddu G., Sorg U.R., Zhang D.E., Trilling M., Klingel K., Sauter M., Kandolf R., other authors. 2011; Enforced viral replication activates adaptive immunity and is essential for the control of a cytopathic virus. Nat Immunol 13:51–57 [View Article][PubMed]
    [Google Scholar]
  26. Hughes D.J., Kipar A., Sample J.T., Stewart J.P. 2010; Pathogenesis of a model gammaherpesvirus in a natural host. J Virol 84:3949–3961 [View Article][PubMed]
    [Google Scholar]
  27. Hwang S., Kim K.S., Flano E., Wu T.T., Tong L.M., Park A.N., Song M.J., Sanchez D.J., O'Connell R.M., other authors. 2009; Conserved herpesviral kinase promotes viral persistence by inhibiting the IRF-3-mediated type I interferon response. Cell Host Microbe 5:166–178 [View Article][PubMed]
    [Google Scholar]
  28. Iannacone M., Moseman E.A., Tonti E., Bosurgi L., Junt T., Henrickson S.E., Whelan S.P., Guidotti L.G., von Andrian U.H. 2010; Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature 465:1079–1083 [View Article][PubMed]
    [Google Scholar]
  29. Jensen G.S., Poppema S., Mant M.J., Pilarski L.M. 1989; Transition in CD45 isoform expression during differentiation of normal and abnormal B cells. Int Immunol 1:229–236 [View Article][PubMed]
    [Google Scholar]
  30. Junt T., Moseman E.A., Iannacone M., Massberg S., Lang P.A., Boes M., Fink K., Henrickson S.E., Shayakhmetov D.M., other authors. 2007; Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450:110–114 [View Article][PubMed]
    [Google Scholar]
  31. Kapadia S.B., Molina H., van Berkel V., Speck S.H., Virgin H.W. 1999; Murine gammaherpesvirus 68 encodes a functional regulator of complement activation. J Virol 73:7658–7670[PubMed]
    [Google Scholar]
  32. Kozuch O., Reichel M., Lesso J., Remenová A., Labuda M., Lysý J., Mistríková J. 1993; Further isolation of murine herpesviruses from small mammals in southwestern Slovakia. Acta Virol 37:101–105[PubMed]
    [Google Scholar]
  33. Lawler C., Milho R., May J.S., Stevenson P.G. 2015; Rhadinovirus host entry by co-operative infection. PLoS Pathog 11:e1004761 [View Article][PubMed]
    [Google Scholar]
  34. Liang C., Oh B.H., Jung J.U. 2015; Novel functions of viral anti-apoptotic factors. Nat Rev Microbiol 13:7–12 [View Article][PubMed]
    [Google Scholar]
  35. Madisen L., Zwingman T.A., Sunkin S.M., Oh S.W., Zariwala H.A., Gu H., Ng L.L., Palmiter R.D., Hawrylycz M.J., other authors. 2010; A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140 [View Article][PubMed]
    [Google Scholar]
  36. May J.S., Stevenson P.G. 2010; Vaccination with murid herpesvirus-4 glycoprotein B reduces viral lytic replication but does not induce detectable virion neutralization. J Gen Virol 91:2542–2552 [View Article][PubMed]
    [Google Scholar]
  37. McGeoch D.J., Gatherer D., Dolan A. 2005; On phylogenetic relationships among major lineages of the Gammaherpesvirinae . J Gen Virol 86:307–316 [View Article][PubMed]
    [Google Scholar]
  38. Mebius R.E., Nolte M.A., Kraal G. 2004; Development and function of the splenic marginal zone. Crit Rev Immunol 24:449–464 [View Article][PubMed]
    [Google Scholar]
  39. Milho R., Smith C.M., Marques S., Alenquer M., May J.S., Gillet L., Gaspar M., Efstathiou S., Simas J.P., Stevenson P.G. 2009; In vivo imaging of murid herpesvirus-4 infection. J Gen Virol 90:21–32 [View Article][PubMed]
    [Google Scholar]
  40. Moretta A. 2002; Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat Rev Immunol 2:957–965 [View Article][PubMed]
    [Google Scholar]
  41. Mount A.M., Masson F., Kupresanin F., Smith C.M., May J.S., van Rooijen N., Stevenson P.G., Belz G.T. 2010; Interference with dendritic cell populations limits early antigen presentation in chronic γ-herpesvirus-68 infection. J Immunol 185:3669–3676 [View Article][PubMed]
    [Google Scholar]
  42. Oehen S., Odermatt B., Karrer U., Hengartner H., Zinkernagel R., López-Macías C. 2002; Marginal zone macrophages and immune responses against viruses. J Immunol 169:1453–1458 [View Article][PubMed]
    [Google Scholar]
  43. Oetke C., Vinson M.C., Jones C., Crocker P.R. 2006; Sialoadhesin-deficient mice exhibit subtle changes in B- and T-cell populations and reduced immunoglobulin M levels. Mol Cell Biol 1549:1557 [View Article][PubMed]
    [Google Scholar]
  44. Parry C.M., Simas J.P., Smith V.P., Stewart C.A., Minson A.C., Efstathiou S., Alcami A. 2000; A broad spectrum secreted chemokine binding protein encoded by a herpesvirus. J Exp Med 191:573–578 [View Article][PubMed]
    [Google Scholar]
  45. Phan T.G., Grigorova I., Okada T., Cyster J.G. 2007; Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol 8:992–1000 [View Article][PubMed]
    [Google Scholar]
  46. Pires de Miranda M., Lopes F.B., McVey C.E., Bustelo X.R., Simas J.P. 2013; Role of Src homology domain binding in signaling complexes assembled by the murid γ-herpesvirus M2 protein. J Biol Chem 288:3858–3870 [View Article][PubMed]
    [Google Scholar]
  47. Roozendaal R., Mempel T.R., Pitcher L.A., Gonzalez S.F., Verschoor A., Mebius R.E., von Andrian U.H., Carroll M.C. 2009; Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30:264–276 [View Article][PubMed]
    [Google Scholar]
  48. Saliki J.T., Cooper E.J., Rotstein D.S., Caseltine S.L., Pabst D.A., McLellan W.A., Govett P., Harms C., Smolarek K.A., Romero C.H. 2006; A novel gammaherpesvirus associated with genital lesions in a Blainville's beaked whale (Mesoplodon densirostris). J Wildl Dis 42:142–148 [View Article][PubMed]
    [Google Scholar]
  49. Sandberg K., Eloranta M.L., Campbell I.L. 1994; Expression of alpha/beta interferons (IFN-α/β) and their relationship to IFN-α/β-induced genes in lymphocytic choriomeningitis. J Virol 68:7358–7366[PubMed]
    [Google Scholar]
  50. Seiler P., Aichele P., Odermatt B., Hengartner H., Zinkernagel R.M., Schwendener R.A. 1997; Crucial role of marginal zone macrophages and marginal zone metallophils in the clearance of lymphocytic choriomeningitis virus infection. Eur J Immunol 27:2626–2633 [View Article][PubMed]
    [Google Scholar]
  51. Sokal E.M., Hoppenbrouwers K., Vandermeulen C., Moutschen M., Léonard P., Moreels A., Haumont M., Bollen A., Smets F., Denis M. 2007; Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein–Barr virus vaccine in healthy young adults. J Infect Dis 196:1749–1753 [View Article][PubMed]
    [Google Scholar]
  52. Stevenson P.G., Efstathiou S., Doherty P.C., Lehner P.J. 2000; Inhibition of MHC class I-restricted antigen presentation by gamma 2-herpesviruses. Proc Natl Acad Sci U S A 97:8455–8460 [View Article][PubMed]
    [Google Scholar]
  53. Stevenson P.G., May J.S., Smith X.G., Marques S., Adler H., Koszinowski U.H., Simas J.P., Efstathiou S. 2002; K3-mediated evasion of CD8+T cells aids amplification of a latent gamma-herpesvirus. Nat Immunol 3:733–740[PubMed]
    [Google Scholar]
  54. Stevenson P.G., Simas J.P., Efstathiou S. 2009; Immune control of mammalian gamma-herpesviruses: lessons from murid herpesvirus-4. J Gen Virol 90:2317–2330 [View Article][PubMed]
    [Google Scholar]
  55. Tan C.S., Frederico B., Stevenson P.G. 2014; Herpesvirus delivery to the murine respiratory tract. J Virol Methods 206:105–114 [View Article][PubMed]
    [Google Scholar]
  56. van Rooijen N., Sanders A. 1994; Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 174:83–93 [View Article][PubMed]
    [Google Scholar]
  57. Wilcox R.S., Vaz P., Ficorilli N.P., Whiteley P.L., Wilks C.R., Devlin J.M. 2011; Gammaherpesvirus infection in a free-ranging eastern grey kangaroo (Macropus giganteus). Aust Vet J 89:55–57 [View Article][PubMed]
    [Google Scholar]
  58. Winkelmann E.R., Widman D.G., Xia J., Johnson A.J., van Rooijen N., Mason P.W., Bourne N., Milligan G.N. 2014; Subcapsular sinus macrophages limit dissemination of West Nile virus particles after inoculation but are not essential for the development of West Nile virus-specific T cell responses. Virology 450-451:278–289 doi:10.1016/j.virol.2013.12.021 [PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000140
Loading
/content/journal/jgv/10.1099/vir.0.000140
Loading

Data & Media loading...

Most cited Most Cited RSS feed