1887

Abstract

CCR5 serves as an essential coreceptor for human immunodeficiency virus type 1 (HIV-1) entry, and individuals with a CCR5 variant appear to be healthy, making CCR5 an attractive target for control of HIV-1 infection. The CRISPR/Cas9, which functions as a naturally existing adaptive immune system in prokaryotes, has been recently harnessed as a novel nuclease system for genome editing in mammalian cells. Although CRISPR/Cas9 can be readily delivered into cell lines, due to the large size of the Cas9 protein, efficient delivery of CCR5-targeting CRISPR/Cas9 components into primary cells, including CD4 T-cells, the primary target for HIV-1 infection , remains a challenge. In the current study, following design of a panel of top-ranked single-guided RNAs (sgRNAs) targeting the ORF of , we demonstrate that CRISPR/Cas9 can efficiently mediate the editing of the locus in cell lines, resulting in the knockout of CCR5 expression on the cell surface. Next-generation sequencing revealed that various mutations were introduced around the predicted cleavage site of . For each of the three most effective sgRNAs that we analysed, no significant off-target effects were detected at the 15 top-scoring potential sites. More importantly, by constructing chimeric Ad5F35 adenoviruses carrying CRISPR/Cas9 components, we efficiently transduced primary CD4 T-lymphocytes and disrupted CCR5 expression, and the positively transduced cells were conferred with HIV-1 resistance. To our knowledge, this is the first study establishing HIV-1 resistance in primary CD4 T-cells utilizing adenovirus-delivered CRISPR/Cas9.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000139
2015-08-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/8/2381.html?itemId=/content/journal/jgv/10.1099/vir.0.000139&mimeType=html&fmt=ahah

References

  1. Alkhatib G., Combadiere C., Broder C.C., Feng Y., Kennedy P.E., Murphy P.M., Berger E.A. 1996; CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958 [CrossRef][PubMed]
    [Google Scholar]
  2. Badia R., Riveira-Muñoz E., Clotet B., Esté J.A., Ballana E. 2014; Gene editing using a zinc-finger nuclease mimicking the CCR5Δ32 mutation induces resistance to CCR5-using HIV-1. J Antimicrob Chemother 69:1755–1759 [CrossRef][PubMed]
    [Google Scholar]
  3. Bett A.J., Haddara W., Prevec L., Graham F.L. 1994; An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci U S A 91:8802–8806 [CrossRef][PubMed]
    [Google Scholar]
  4. Boch J., Scholze H., Schornack S., Landgraf A., Hahn S., Kay S., Lahaye T., Nickstadt A., Bonas U. 2009; Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512 [CrossRef][PubMed]
    [Google Scholar]
  5. Centers for Disease Control (CDC) 1981; Pneumocystis pneumonia—Los Angeles. MMWR Morb Mortal Wkly Rep 30:250–252[PubMed]
    [Google Scholar]
  6. Cheng A.W., Wang H., Yang H., Shi L., Katz Y., Theunissen T.W., Rangarajan S., Shivalila C.S., Dadon D.B., Jaenisch R. 2013; Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23:1163–1171 [CrossRef][PubMed]
    [Google Scholar]
  7. Cheng R., Peng J., Yan Y., Cao P., Wang J., Qiu C., Tang L., Liu D., Tang L., other authors. 2014; Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9. FEBS Lett 588:3954–3958 [CrossRef][PubMed]
    [Google Scholar]
  8. Chun T.W., Nickle D.C., Justement J.S., Meyers J.H., Roby G., Hallahan C.W., Kottilil S., Moir S., Mican J.M., other authors. 2008; Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J Infect Dis 197:714–720 [CrossRef][PubMed]
    [Google Scholar]
  9. Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., other authors. 2013; Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823 [CrossRef][PubMed]
    [Google Scholar]
  10. Corbeau P., Reynes J. 2011; Immune reconstitution under antiretroviral therapy: the new challenge in HIV-1 infection. Blood 117:5582–5590 [CrossRef][PubMed]
    [Google Scholar]
  11. Cradick T.J., Fine E.J., Antico C.J., Bao G. 2013; CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 41:9584–9592 [CrossRef][PubMed]
    [Google Scholar]
  12. DiGiusto D.L., Stan R., Krishnan A., Li H., Rossi J.J., Zaia J.A. 2013; Development of hematopoietic stem cell based gene therapy for HIV-1 infection: considerations for proof of concept studies and translation to standard medical practice. Viruses 5:2898–2919 [CrossRef][PubMed]
    [Google Scholar]
  13. Doench J.G., Hartenian E., Graham D.B., Tothova Z., Hegde M., Smith I., Sullender M., Ebert B.L., Xavier R.J., Root D.E. 2014; Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32:1262–1267 [CrossRef][PubMed]
    [Google Scholar]
  14. Duan J., Lu G., Xie Z., Lou M., Luo J., Guo L., Zhang Y. 2014; Genome-wide identification of CRISPR/Cas9 off-targets in human genome. Cell Res 24:1009–1012 [CrossRef][PubMed]
    [Google Scholar]
  15. Ebina H., Misawa N., Kanemura Y., Koyanagi Y. 2013; Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 3:2510 [CrossRef][PubMed]
    [Google Scholar]
  16. Fätkenheuer G., Nelson M., Lazzarin A., Konourina I., Hoepelman A.I., Lampiris H., Hirschel B., Tebas P., Raffi F., other authors. 2008; Subgroup analyses of maraviroc in previously treated R5 HIV-1 infection. N Engl J Med 359:1442–1455 [CrossRef][PubMed]
    [Google Scholar]
  17. Gaggar A., Shayakhmetov D.M., Lieber A. 2003; CD46 is a cellular receptor for group B adenoviruses. Nat Med 9:1408–1412 [CrossRef][PubMed]
    [Google Scholar]
  18. Gilbert L.A., Horlbeck M.A., Adamson B., Villalta J.E., Chen Y., Whitehead E.H., Guimaraes C., Panning B., Ploegh H.L., other authors. 2014; Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661 [CrossRef][PubMed]
    [Google Scholar]
  19. Guilinger J.P., Thompson D.B., Liu D.R. 2014; Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32:577–582 [CrossRef][PubMed]
    [Google Scholar]
  20. Herrera-Carrillo E., Berkhout B. 2015; Potential mechanisms for cell-based gene therapy to treat HIV/AIDS. Expert Opin Ther Targets 19:245–263[PubMed] [CrossRef]
    [Google Scholar]
  21. Holt N., Wang J., Kim K., Friedman G., Wang X., Taupin V., Crooks G.M., Kohn D.B., Gregory P.D., other authors. 2010; Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 28:839–847 [CrossRef][PubMed]
    [Google Scholar]
  22. Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., other authors. 2013; DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832 [CrossRef][PubMed]
    [Google Scholar]
  23. Hu Q., Napier K.B., Trent J.O., Wang Z., Taylor S., Griffin G.E., Peiper S.C., Shattock R.J. 2005; Restricted variable residues in the C-terminal segment of HIV-1 V3 loop regulate the molecular anatomy of CCR5 utilization. J Mol Biol 350:699–712 [CrossRef][PubMed]
    [Google Scholar]
  24. Hu W., Kaminski R., Yang F., Zhang Y., Cosentino L., Li F., Luo B., Alvarez-Carbonell D., Garcia-Mesa Y., other authors. 2014; RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A 111:11461–11466 [CrossRef][PubMed]
    [Google Scholar]
  25. Huang Y., Paxton W.A., Wolinsky S.M., Neumann A.U., Zhang L., He T., Kang S., Ceradini D., Jin Z., other authors. 1996; The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 2:1240–1243 [CrossRef][PubMed]
    [Google Scholar]
  26. Hütter G., Nowak D., Mossner M., Ganepola S., Müßig A., Allers K., Schneider T., Hofmann J., Kücherer C., other authors. 2009; Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360:692–698 [CrossRef][PubMed]
    [Google Scholar]
  27. Jin W., Li C., Du T., Hu K., Huang X., Hu Q. 2014; DC-SIGN plays a stronger role than DCIR in mediating HIV-1 capture and transfer. Virology 458-459:83–92 [CrossRef][PubMed]
    [Google Scholar]
  28. Keele B.F., Giorgi E.E., Salazar-Gonzalez J.F., Decker J.M., Pham K.T., Salazar M.G., Sun C., Grayson T., Wang S., other authors. 2008; Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A 105:7552–7557 [CrossRef][PubMed]
    [Google Scholar]
  29. Kennedy E.M., Kornepati A.V., Goldstein M., Bogerd H.P., Poling B.C., Whisnant A.W., Kastan M.B., Cullen B.R. 2014; Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol 88:11965–11972 [CrossRef][PubMed]
    [Google Scholar]
  30. Kent S.J., Reece J.C., Petravic J., Martyushev A., Kramski M., De Rose R., Cooper D.A., Kelleher A.D., Emery S., other authors. 2013; The search for an HIV cure: tackling latent infection. Lancet Infect Dis 13:614–621 [CrossRef][PubMed]
    [Google Scholar]
  31. Kim H., Kim J.S. 2014; A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–334 [CrossRef][PubMed]
    [Google Scholar]
  32. Kootstra N.A., Verma I.M. 2003; Gene therapy with viral vectors. Annu Rev Pharmacol Toxicol 43:413–439 [CrossRef][PubMed]
    [Google Scholar]
  33. Kordelas L., Verheyen J., Beelen D.W., Horn P.A., Heinold A., Kaiser R., Trenschel R., Schadendorf D., Dittmer U., Esser S. 2014; Shift of HIV tropism in stem-cell transplantation with CCR5 Delta32 mutation. N Engl J Med 371:880–882 [CrossRef][PubMed]
    [Google Scholar]
  34. Kuscu C., Arslan S., Singh R., Thorpe J., Adli M. 2014; Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32:677–683 [CrossRef][PubMed]
    [Google Scholar]
  35. Lewin S.R. 2013; A cure for HIV: where we've been, and where we're headed. Lancet 381:2057–2058 [CrossRef][PubMed]
    [Google Scholar]
  36. Lin S.R., Yang H.C., Kuo Y.T., Liu C.J., Yang T.Y., Sung K.C., Lin Y.Y., Wang H.Y., Wang C.C., other authors. 2014a; The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids 3:e186 [CrossRef][PubMed]
    [Google Scholar]
  37. Lin Y., Cradick T.J., Brown M.T., Deshmukh H., Ranjan P., Sarode N., Wile B.M., Vertino P.M., Stewart F.J., Bao G. 2014b; CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42:7473–7485 [CrossRef][PubMed]
    [Google Scholar]
  38. Luo J., Deng Z.L., Luo X., Tang N., Song W.X., Chen J., Sharff K.A., Luu H.H., Haydon R.C., other authors. 2007; A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc 2:1236–1247 [CrossRef][PubMed]
    [Google Scholar]
  39. Maggio I., Holkers M., Liu J., Janssen J.M., Chen X., Gonçalves M.A. 2014; Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells. Sci Rep 4:5105 [CrossRef][PubMed]
    [Google Scholar]
  40. Mak A.N., Bradley P., Cernadas R.A., Bogdanove A.J., Stoddard B.L. 2012; The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719 [CrossRef][PubMed]
    [Google Scholar]
  41. Mali P., Esvelt K.M., Church G.M. 2013a; Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963 [CrossRef][PubMed]
    [Google Scholar]
  42. Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. 2013b; RNA-guided human genome engineering via Cas9. Science 339:823–826 [CrossRef][PubMed]
    [Google Scholar]
  43. Mandal P.K., Ferreira L.M., Collins R., Meissner T.B., Boutwell C.L., Friesen M., Vrbanac V., Garrison B.S., Stortchevoi A., other authors. 2014; Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell 15:643–652 [CrossRef][PubMed]
    [Google Scholar]
  44. Moncunill G., Armand-Ugón M., Pauls E., Clotet B., Esté J.A. 2008; HIV-1 escape to CCR5 coreceptor antagonism through selection of CXCR4-using variants in vitro. AIDS 22:23–31 [CrossRef][PubMed]
    [Google Scholar]
  45. Mosier D.E. 2009; How HIV changes its tropism: evolution and adaptation?. Curr Opin HIV AIDS 4:125–130[PubMed]
    [Google Scholar]
  46. Mussolino C., Alzubi J., Fine E.J., Morbitzer R., Cradick T.J., Lahaye T., Bao G., Cathomen T. 2014; TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res 42:6762–6773 [CrossRef][PubMed]
    [Google Scholar]
  47. Parrish N.F., Gao F., Li H., Giorgi E.E., Barbian H.J., Parrish E.H., Zajic L., Iyer S.S., Decker J.M., other authors. 2013; Phenotypic properties of transmitted founder HIV-1. Proc Natl Acad Sci U S A 110:6626–6633 [CrossRef][PubMed]
    [Google Scholar]
  48. Pavletich N.P., Pabo C.O. 1991; Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252:809–817 [CrossRef][PubMed]
    [Google Scholar]
  49. Perez E.E., Wang J., Miller J.C., Jouvenot Y., Kim K.A., Liu O., Wang N., Lee G., Bartsevich V.V., other authors. 2008; Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26:808–816 [CrossRef][PubMed]
    [Google Scholar]
  50. Poveda E. 2015; HIV tropism shift: new paradigm on cell therapy strategies for HIV cure. AIDS Rev 17:65[PubMed]
    [Google Scholar]
  51. Qi L.S., Larson M.H., Gilbert L.A., Doudna J.A., Weissman J.S., Arkin A.P., Lim W.A. 2013; Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183 [CrossRef][PubMed]
    [Google Scholar]
  52. Ramakrishna S., Kwaku Dad A.B., Beloor J., Gopalappa R., Lee S.K., Kim H. 2014; Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24:1020–1027 [CrossRef][PubMed]
    [Google Scholar]
  53. Ran F.A., Hsu P.D., Lin C.Y., Gootenberg J.S., Konermann S., Trevino A.E., Scott D.A., Inoue A., Matoba S., other authors. 2013; Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389 [CrossRef][PubMed]
    [Google Scholar]
  54. Richman D.D., Margolis D.M., Delaney M., Greene W.C., Hazuda D., Pomerantz R.J. 2009; The challenge of finding a cure for HIV infection. Science 323:1304–1307 [CrossRef][PubMed]
    [Google Scholar]
  55. Saito N., Chono H., Shibata H., Ageyama N., Yasutomi Y., Mineno J. 2014; CD4(+) T cells modified by the endoribonuclease MazF are safe and can Pprsist in SHIV-infected Rhesus macaques. Mol Ther Nucleic Acids 3:e168 [CrossRef][PubMed]
    [Google Scholar]
  56. Savkovic B., Nichols J., Birkett D., Applegate T., Ledger S., Symonds G., Murray J.M. 2014; A quantitative comparison of anti-HIV gene therapy delivered to hematopoietic stem cells versus CD4+ T cells. PLOS Comput Biol 10:e1003681 [CrossRef][PubMed]
    [Google Scholar]
  57. Seeger C., Sohn J.A. 2014; Targeting hepatitis B virus with CRISPR/Cas9. Mol Ther Nucleic Acids 3:e216 [CrossRef][PubMed]
    [Google Scholar]
  58. Sendagire H., Easterbrook P.J., Nankya I., Arts E., Thomas D., Reynolds S.J. 2009; The challenge of HIV-1 antiretroviral resistance in Africa in the era of HAART. AIDS Rev 11:59–70[PubMed]
    [Google Scholar]
  59. Shalem O., Sanjana N.E., Hartenian E., Shi X., Scott D.A., Mikkelsen T.S., Heckl D., Ebert B.L., Root D.E., other authors. 2014; Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87 [CrossRef][PubMed]
    [Google Scholar]
  60. Shayakhmetov D.M., Papayannopoulou T., Stamatoyannopoulos G., Lieber A. 2000; Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. J Virol 74:2567–2583 [CrossRef][PubMed]
    [Google Scholar]
  61. Smith C., Gore A., Yan W., Abalde-Atristain L., Li Z., He C., Wang Y., Brodsky R.A., Zhang K., other authors. 2014; Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15:12–13 [CrossRef][PubMed]
    [Google Scholar]
  62. Soda Y., Shimizu N., Jinno A., Liu H.Y., Kanbe K., Kitamura T., Hoshino H. 1999; Establishment of a new system for determination of coreceptor usages of HIV based on the human glioma NP-2 cell line. Biochem Biophys Res Commun 258:313–321 [CrossRef][PubMed]
    [Google Scholar]
  63. Stan R., Zaia J.A. 2014; Practical considerations in gene therapy for HIV cure. Curr HIV/AIDS Rep 11:11–19 [CrossRef][PubMed]
    [Google Scholar]
  64. Tanenbaum M.E., Gilbert L.A., Qi L.S., Weissman J.S., Vale R.D. 2014; A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646 [CrossRef][PubMed]
    [Google Scholar]
  65. Tebas P., Stein D., Tang W.W., Frank I., Wang S.Q., Lee G., Spratt S.K., Surosky R.T., Giedlin M.A., other authors. 2014; Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370:901–910 [CrossRef][PubMed]
    [Google Scholar]
  66. Tiscornia G., Singer O., Verma I.M. 2006; Design and cloning of lentiviral vectors expressing small interfering RNAs. Nat Protoc 1:234–240 [CrossRef][PubMed]
    [Google Scholar]
  67. Urnov F.D., Miller J.C., Lee Y.L., Beausejour C.M., Rock J.M., Augustus S., Jamieson A.C., Porteus M.H., Gregory P.D., Holmes M.C. 2005; Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651 [CrossRef][PubMed]
    [Google Scholar]
  68. Veres A., Gosis B.S., Ding Q., Collins R., Ragavendran A., Brand H., Erdin S., Cowan C.A., Talkowski M.E., Musunuru K. 2014; Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15:27–30 [CrossRef][PubMed]
    [Google Scholar]
  69. Wagner J.C., Platt R.J., Goldfless S.J., Zhang F., Niles J.C. 2014; Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum . Nat Methods 11:915–918 [CrossRef][PubMed]
    [Google Scholar]
  70. Wang J., Quake S.R. 2014; RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proc Natl Acad Sci U S A 111:13157–13162 [CrossRef][PubMed]
    [Google Scholar]
  71. Wang W., Ye C., Liu J., Zhang D., Kimata J.T., Zhou P. 2014; CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One 9:e115987 [CrossRef][PubMed]
    [Google Scholar]
  72. Ye L., Wang J., Beyer A.I., Teque F., Cradick T.J., Qi Z., Chang J.C., Bao G., Muench M.O., other authors. 2014; Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci U S A 111:9591–9596 [CrossRef][PubMed]
    [Google Scholar]
  73. Yuen K.S., Chan C.P., Wong N.H., Ho C.H., Ho T.H., Lei T., Deng W., Tsao S.W., Chen H., other authors. 2015; CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells. J Gen Virol 96:626–636[PubMed] [CrossRef]
    [Google Scholar]
  74. Zhou Y., Zhu S., Cai C., Yuan P., Li C., Huang Y., Wei W. 2014; High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509:487–491 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000139
Loading
/content/journal/jgv/10.1099/vir.0.000139
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error