1887

Abstract

The viral protein N is unique to the genus within the family . After autocatalytic cleavage from the nascent polyprotein, N suppresses type I IFN (IFN-α/β) induction by mediating proteasomal degradation of IFN regulatory factor 3 (IRF-3). Previous studies found that the N-mediated IRF-3 degradation was dependent of a TRASH domain in the C-terminal half of N coordinating zinc by means of the amino acid residues C112, C134, D136 and C138. Interestingly, four classical swine fever virus (CSFV) isolates obtained from diseased pigs in Thailand in 1993 and 1998 did not suppress IFN-α/β induction despite the presence of an intact TRASH domain. Through systematic analyses, it was found that an amino acid mutation at position 40 or mutations at positions 17 and 61 in the N-terminal half of N of these four isolates were related to the lack of IRF-3-degrading activity. Restoring a histidine at position 40 or both a proline at position 17 and a lysine at position 61 based on the sequence of a functional N contributed to higher stability of the reconstructed N compared with the N from the Thai isolate. This led to enhanced interaction of N with IRF-3 along with its degradation by the proteasome. The results of the present study revealed that amino acid residues in the N-terminal domain of N are involved in the stability of N, in interaction of N with IRF-3 and subsequent degradation of IRF-3, leading to downregulation of IFN-α/β production.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000132
2015-07-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/7/1746.html?itemId=/content/journal/jgv/10.1099/vir.0.000132&mimeType=html&fmt=ahah

References

  1. Au W.C., Moore P.A., Lowther W., Juang Y.T., Pitha P.M.. ( 1995;). Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes. Proc Natl Acad Sci U S A 92: 11657–11661 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bauhofer O., Summerfield A., Sakoda Y., Tratschin J.D., Hofmann M.A., Ruggli N.. ( 2007;). Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol 81: 3087–3096 [CrossRef] [PubMed].
    [Google Scholar]
  3. Gottipati K., Ruggli N., Gerber M., Tratschin J.D., Benning M., Bellamy H., Choi K.H.. ( 2013;). The structure of classical swine fever virus Npro: a novel cysteine autoprotease and zinc-binding protein involved in subversion of type I interferon induction. PLoS Pathog 9: e1003704 [CrossRef] [PubMed].
    [Google Scholar]
  4. Haller O., Kochs G., Weber F.. ( 2006;). The interferon response circuit: induction and suppression by pathogenic viruses. Virology 344: 119–130 [CrossRef] [PubMed].
    [Google Scholar]
  5. Hilton L., Moganeradj K., Zhang G., Chen Y.H., Randall R.E., McCauley J.W., Goodbourn S.. ( 2006;). The Npro product of bovine viral diarrhea virus inhibits DNA binding by interferon regulatory factor 3 and targets it for proteasomal degradation. J Virol 80: 11723–11732 [CrossRef] [PubMed].
    [Google Scholar]
  6. Honda K., Takaoka A., Taniguchi T.. ( 2006;). Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25: 349–360 [CrossRef] [PubMed].
    [Google Scholar]
  7. Jefferson M., Donaszi-Ivanov A., Pollen S., Dalmay T., Saalbach G., Powell P.P.. ( 2014;). Host factors that interact with the pestivirus N-terminal protease, Npro, are components of the ribonucleoprotein complex. J Virol 88: 10340–10353 [CrossRef] [PubMed].
    [Google Scholar]
  8. Jennings S., Martínez-Sobrido L., García-Sastre A., Weber F., Kochs G.. ( 2005;). Thogoto virus ML protein suppresses IRF3 function. Virology 331: 63–72 [CrossRef] [PubMed].
    [Google Scholar]
  9. Kameyama K., Sakoda Y., Tamai K., Igarashi H., Tajima M., Mochizuki T., Namba Y., Kida H.. ( 2006;). Development of an immunochromatographic test kit for rapid detection of bovine viral diarrhea virus antigen. J Virol Methods 138: 140–146 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kumagai T., Shimizu T., Matumoto M.. ( 1958;). Detection of hog cholera virus by its effect on Newcastle disease virus in swine tissue culture. Science 128: 366 [CrossRef] [PubMed].
    [Google Scholar]
  11. La Rocca S.A., Herbert R.J., Crooke H., Drew T.W., Wileman T.E., Powell P.P.. ( 2005;). Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease Npro. J Virol 79: 7239–7247 [CrossRef] [PubMed].
    [Google Scholar]
  12. Lamp B., Riedel C., Wentz E., Tortorici M.A., Rümenapf T.. ( 2013;). Autocatalytic cleavage within classical swine fever virus NS3 leads to a functional separation of protease and helicase. J Virol 87: 11872–11883 [CrossRef] [PubMed].
    [Google Scholar]
  13. Lindenbach B.D., Thiel H.J., Rice C.M.. ( 2007;). Flaviviridae: the viruses and their replicon. . In Fields Virology, 5th edn., pp. 1101–1152. Edited by Knipe D. M., Howley P. M.. Philadelphia, PA: Lippincott-Raven;.
    [Google Scholar]
  14. Mayer D., Hofmann M.A., Tratschin J.D.. ( 2004;). Attenuation of classical swine fever virus by deletion of the viral Npro gene. Vaccine 22: 317–328 [CrossRef] [PubMed].
    [Google Scholar]
  15. Moser C., Stettler P., Tratschin J.D., Hofmann M.A.. ( 1999;). Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus. J Virol 73: 7787–7794 [PubMed].
    [Google Scholar]
  16. Ocaña-Macchi M., Bel M., Guzylack-Piriou L., Ruggli N., Liniger M., McCullough K.C., Sakoda Y., Isoda N., Matrosovich M., Summerfield A.. ( 2009;). Hemagglutinin-dependent tropism of H5N1 avian influenza virus for human endothelial cells. J Virol 83: 12947–12955 [CrossRef] [PubMed].
    [Google Scholar]
  17. Randall R.E., Goodbourn S.. ( 2008;). Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89: 1–47 [CrossRef] [PubMed].
    [Google Scholar]
  18. Reed L., Muench H.. ( 1938;). A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27: 493–497.
    [Google Scholar]
  19. Ruggli N., Tratschin J.D., Mittelholzer C., Hofmann M.A.. ( 1996;). Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA. J Virol 70: 3478–3487 [PubMed].
    [Google Scholar]
  20. Ruggli N., Summerfield A., Fiebach A.R., Guzylack-Piriou L., Bauhofer O., Lamm C.G., Waltersperger S., Matsuno K., Liu L.. ( 2009;). Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3-degrading function of Npro. J Virol 83: 817–829 [CrossRef] [PubMed].
    [Google Scholar]
  21. Saitoh T., Tun-Kyi A., Ryo A., Yamamoto M., Finn G., Fujita T., Akira S., Yamamoto N., Lu K.P., Yamaoka S.. ( 2006;). Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nat Immunol 7: 598–605 [CrossRef] [PubMed].
    [Google Scholar]
  22. Sakoda Y., Fukusho A.. ( 1998;). Establishment and characterization of a porcine kidney cell line, FS-L3, which forms unique multicellular domes in serum-free culture. In Vitro Cell Dev Biol Anim 34: 53–57 [CrossRef] [PubMed].
    [Google Scholar]
  23. Sakoda Y., Ozawa S., Damrongwatanapokin S., Sato M., Ishikawa K., Fukusho A.. ( 1999;). Genetic heterogeneity of porcine and ruminant pestiviruses mainly isolated in Japan. Vet Microbiol 65: 75–86 [CrossRef] [PubMed].
    [Google Scholar]
  24. Schneider C.A., Rasband W.S., Eliceiri K.W.. ( 2012;). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675 [CrossRef] [PubMed].
    [Google Scholar]
  25. Seago J., Goodbourn S., Charleston B.. ( 2010;). The classical swine fever virus Npro product is degraded by cellular proteasomes in a manner that does not require interaction with interferon regulatory factor 3. J Gen Virol 91: 721–726 [CrossRef] [PubMed].
    [Google Scholar]
  26. Shimizu Y., Furuuchi S., Kumagai T., Sasahara J.. ( 1970;). A mutant of hog cholera virus inducing interference in swine testicle cell cultures. Am J Vet Res 31: 1787–1794 [PubMed].
    [Google Scholar]
  27. Szymanski M.R., Fiebach A.R., Tratschin J.D., Gut M., Ramanujam V.M., Gottipati K., Patel P., Ye M., Ruggli N., Choi K.H.. ( 2009;). Zinc binding in pestivirus Npro is required for interferon regulatory factor 3 interaction and degradation. J Mol Biol 391: 438–449 [CrossRef] [PubMed].
    [Google Scholar]
  28. Talon J., Horvath C.M., Polley R., Basler C.F., Muster T., Palese P., García-Sastre A.. ( 2000;). Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J Virol 74: 7989–7996 [CrossRef] [PubMed].
    [Google Scholar]
  29. Tamura T., Sakoda Y., Yoshino F., Nomura T., Yamamoto N., Sato Y., Okamatsu M., Ruggli N., Kida H.. ( 2012;). Selection of classical swine fever virus with enhanced pathogenicity reveals synergistic virulence determinants in E2 and NS4B. J Virol 86: 8602–8613 [CrossRef] [PubMed].
    [Google Scholar]
  30. Tamura T., Nagashima N., Ruggli N., Summerfield A., Kida H., Sakoda Y.. ( 2014;). Npro of classical swine fever virus contributes to pathogenicity in pigs by preventing type I interferon induction at local replication sites. Vet Res 45: 47 [CrossRef] [PubMed].
    [Google Scholar]
  31. Taniguchi T., Ogasawara K., Takaoka A., Tanaka N.. ( 2001;). IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19: 623–655 [CrossRef] [PubMed].
    [Google Scholar]
  32. Tratschin J.D., Moser C., Ruggli N., Hofmann M.A.. ( 1998;). Classical swine fever virus leader proteinase Npro is not required for viral replication in cell culture. J Virol 72: 7681–7684 [PubMed].
    [Google Scholar]
  33. Zögg T., Sponring M., Schindler S., Koll M., Schneider R., Brandstetter H., Auer B.. ( 2013;). Crystal structures of the viral protease Npro imply distinct roles for the catalytic water in catalysis. Structure 21: 929–938 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000132
Loading
/content/journal/jgv/10.1099/vir.0.000132
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error