1887

Abstract

Classical swine fever is one of the most important swine diseases worldwide and has tremendous socioeconomic impact. In this study, we focused on the signalling pathways of Toll-like receptors (TLRs) because of their roles in the detection and response to viral infections. To this end, two classical swine fever virus (CSFV) strains, namely the highly virulent CSFV Shimen strain and the avirulent C strain (a vaccine strain), were employed, and the expression of 19 immune effector genes was analysed by real-time PCR, Western blot analyses, ELISA and flow cytometry analyses. experiments were conducted with porcine monocyte-derived macrophages (pMDMs). The results showed that the mRNA and protein levels of TLR2, TLR4 and TLR7 were upregulated in response to CSFV infection, but TLR3 remained unchanged, and was downregulated after infection with the C strain and the Shimen virus, respectively. Furthermore, TLR3-mediated innate immune responses were inhibited in Shimen-strain-infected pMDMs by stimulation with poly(I : C). Accordingly, comprehensive analyses were performed to detect TLR-dependent cytokine responses and the activation of TLR signalling elements. CSFV infection induced mitogen-activated protein kinase activation, but did not elicit NFκB activation, thereby affecting the production of pro-inflammatory cytokines. The Shimen strain infection resulted in a significant activation of IFN regulatory factor IRF7 and suppression of IRF3. These data provided clues for understanding the effect of CSFV infection on the TLR-mediated innate immune response and associated pathological changes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000129
2015-07-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/7/1732.html?itemId=/content/journal/jgv/10.1099/vir.0.000129&mimeType=html&fmt=ahah

References

  1. Abe T. , Kaname Y. , Hamamoto I. , Tsuda Y. , Wen X. , Taguwa S. , Moriishi K. , Takeuchi O. , Kawai T. , other authors . ( 2007;). Hepatitis C virus nonstructural protein 5A modulates the Toll-like receptor-MyD88-dependent signaling pathway in macrophage cell lines. J Virol 81: 8953–8966 [CrossRef] [PubMed].
    [Google Scholar]
  2. Akira S. , Takeda K. , Kaisho T. . ( 2001;). Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2: 675–680 [CrossRef] [PubMed].
    [Google Scholar]
  3. Balmelli C. , Vincent I.E. , Rau H. , Guzylack-Piriou L. , McCullough K. , Summerfield A. . ( 2005;). FcγRII-dependent sensitisation of natural interferon-producing cells for viral infection and interferon-α responses. Eur J Immunol 35: 2406–2415 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bauhofer O. , Summerfield A. , Sakoda Y. , Tratschin J.D. , Hofmann M.A. , Ruggli N. . ( 2007;). Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol 81: 3087–3096 [CrossRef] [PubMed].
    [Google Scholar]
  5. Becher P. , Avalos Ramirez R. , Orlich M. , Cedillo Rosales S. , König M. , Schweizer M. , Stalder H. , Schirrmeier H. , Thiel H.-J. . ( 2003;). Genetic and antigenic characterization of novel pestivirus genotypes: implications for classification. Virology 311: 96–104 [CrossRef] [PubMed].
    [Google Scholar]
  6. Borca M.V. , Gudmundsdottir I. , Fernández-Sainz I.J. , Holinka L.G. , Risatti G.R. . ( 2008;). Patterns of cellular gene expression in swine macrophages infected with highly virulent classical swine fever virus strain Brescia. Virus Res 138: 89–96 [CrossRef] [PubMed].
    [Google Scholar]
  7. Brooks D.G. , Trifilo M.J. , Edelmann K.H. , Teyton L. , McGavern D.B. , Oldstone M.B. . ( 2006;). Interleukin-10 determines viral clearance or persistence in vivo . Nat Med 12: 1301–1309 [CrossRef] [PubMed].
    [Google Scholar]
  8. Carrasco C.P. , Rigden R.C. , Vincent I.E. , Balmelli C. , Ceppi M. , Bauhofer O. , Tâche V. , Hjertner B. , McNeilly F. , other authors . ( 2004;). Interaction of classical swine fever virus with dendritic cells. J Gen Virol 85: 1633–1641 [CrossRef] [PubMed].
    [Google Scholar]
  9. Chang S. , Dolganiuc A. , Szabo G. . ( 2007;). Toll-like receptors 1 and 6 are involved in TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteins. J Leukoc Biol 82: 479–487 [CrossRef] [PubMed].
    [Google Scholar]
  10. Chen L.J. , Dong X.Y. , Zhao M.Q. , Shen H.Y. , Wang J.Y. , Pei J.J. , Liu W.J. , Luo Y.W. , Ju C.M. , Chen J.D. . ( 2012;). Classical swine fever virus failed to activate nuclear factor-kappa b signaling pathway both in vitro in vivo . Virol J 9: 293 [CrossRef] [PubMed].
    [Google Scholar]
  11. Darwich L. , Balasch M. , Plana-Durán J. , Segalés J. , Domingo M. , Mateu E. . ( 2003;). Cytokine profiles of peripheral blood mononuclear cells from pigs with postweaning multisystemic wasting syndrome in response to mitogen, superantigen or recall viral antigens. J Gen Virol 84: 3453–3457 [CrossRef] [PubMed].
    [Google Scholar]
  12. Edwards S. , Fukusho A. , Lefèvre P.-C. , Lipowski A. , Pejsak Z. , Roehe P. , Westergaard J. . ( 2000;). Classical swine fever: the global situation. Vet Microbiol 73: 103–119 [CrossRef] [PubMed].
    [Google Scholar]
  13. Fiebach A.R. , Guzylack-Piriou L. , Python S. , Summerfield A. , Ruggli N. . ( 2011;). Classical swine fever virus Npro limits type I interferon induction in plasmacytoid dendritic cells by interacting with interferon regulatory factor 7. J Virol 85: 8002–8011 [CrossRef] [PubMed].
    [Google Scholar]
  14. Gladue D.P. , Zhu J. , Holinka L.G. , Fernandez-Sainz I. , Carrillo C. , Prarat M.V. , O'Donnell V. , Borca M.V. . ( 2010;). Patterns of gene expression in swine macrophages infected with classical swine fever virus detected by microarray. Virus Res 151: 10–18 [CrossRef] [PubMed].
    [Google Scholar]
  15. Heil F. , Hemmi H. , Hochrein H. , Ampenberger F. , Kirschning C. , Akira S. , Lipford G. , Wagner H. , Bauer S. . ( 2004;). Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303: 1526–1529 [CrossRef] [PubMed].
    [Google Scholar]
  16. Honda K. , Yanai H. , Negishi H. , Asagiri M. , Sato M. , Mizutani T. , Shimada N. , Ohba Y. , Takaoka A. , other authors . ( 2005;). IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434: 772–777 [CrossRef] [PubMed].
    [Google Scholar]
  17. Honda K. , Takaoka A. , Taniguchi T. . ( 2006;). Type I interferon gene induction by the interferon regulatory factor family of transcription factors. Immunity 25: 349–360 [CrossRef] [PubMed].
    [Google Scholar]
  18. Jeong H.-J. , Koo H.-N. , Na H.-J. , Kim M.-S. , Hong S.-H. , Eom J.-W. , Kim K.-S. , Shin T.-Y. , Kim H.-M. . ( 2002;). Inhibition of TNF-α and IL-6 production by Aucubin through blockade of NF-κB activation RBL-2H3 mast cells. Cytokine 18: 252–259 [CrossRef] [PubMed].
    [Google Scholar]
  19. Kawai T. , Akira S. . ( 2010;). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11: 373–384 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kawai T. , Akira S. . ( 2011;). Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34: 637–650 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kawai T. , Sato S. , Ishii K.J. , Coban C. , Hemmi H. , Yamamoto M. , Terai K. , Matsuda M. , Inoue J. , other authors . ( 2004;). Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 5: 1061–1068 [CrossRef] [PubMed].
    [Google Scholar]
  22. Lester S.N. , Li K. . ( 2014;). Toll-like receptors in antiviral innate immunity. J Mol Biol 426: 1246–1264 [PubMed].[CrossRef]
    [Google Scholar]
  23. Li J. , Yu Y.J. , Feng L. , Cai X.B. , Tang H.B. , Sun S.K. , Zhang H.Y. , Liang J.J. , Luo T.R. . ( 2010;). Global transcriptional profiles in peripheral blood mononuclear cell during classical swine fever virus infection. Virus Res 148: 60–70 [CrossRef] [PubMed].
    [Google Scholar]
  24. Luo X. , Ling D. , Li T. , Wan C. , Zhang C. , Pan Z. . ( 2009;). Classical swine fever virus Erns glycoprotein antagonizes induction of interferon-β by double-stranded RNA. Can J Microbiol 55: 698–704 [CrossRef] [PubMed].
    [Google Scholar]
  25. Luo Y. , Li S. , Sun Y. , Qiu H.J. . ( 2014;). Classical swine fever in China: a minireview. Vet Microbiol 172: 1–6 [CrossRef] [PubMed].
    [Google Scholar]
  26. Moennig V. . ( 2000;). Introduction to classical swine fever: virus, disease and control policy. Vet Microbiol 73: 93–102 [CrossRef] [PubMed].
    [Google Scholar]
  27. Negash A.A. , Ramos H.J. , Crochet N. , Lau D.T. , Doehle B. , Papic N. , Delker D.A. , Jo J. , Bertoletti A. , other authors . ( 2013;). IL-1β production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PLoS Pathog 9: e1003330 [CrossRef] [PubMed].
    [Google Scholar]
  28. Ning P. , Zhang Y. , Guo K. , Chen R. , Liang W. , Lin Z. , Li H. . ( 2014;). Discovering up-regulated VEGF-C expression in swine umbilical vein endothelial cells by classical swine fever virus Shimen. Vet Res 45: 48 [CrossRef] [PubMed].
    [Google Scholar]
  29. Python S. , Gerber M. , Suter R. , Ruggli N. , Summerfield A. . ( 2013;). Efficient sensing of infected cells in absence of virus particles by plasmacytoid dendritic cells is blocked by the viral ribonuclease Erns . PLoS Pathog 9: e1003412 [CrossRef] [PubMed].
    [Google Scholar]
  30. Ruggli N. , Tratschin J.-D. , Schweizer M. , McCullough K.C. , Hofmann M.A. , Summerfield A. . ( 2003;). Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of Npro . J Virol 77: 7645–7654 [CrossRef] [PubMed].
    [Google Scholar]
  31. Ruggli N. , Summerfield A. , Fiebach A.R. , Guzylack-Piriou L. , Bauhofer O. , Lamm C.G. , Waltersperger S. , Matsuno K. , Liu L. , other authors . ( 2009;). Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3-degrading function of Npro . J Virol 83: 817–829 [CrossRef] [PubMed].
    [Google Scholar]
  32. Saitoh T. , Satoh T. , Yamamoto N. , Uematsu S. , Takeuchi O. , Kawai T. , Akira S. . ( 2011;). Antiviral protein Viperin promotes Toll-like receptor 7- and Toll-like receptor 9-mediated type I interferon production in plasmacytoid dendritic cells. Immunity 34: 352–363 [CrossRef] [PubMed].
    [Google Scholar]
  33. Sánchez-Cordón P.J. , Núñez A. , Salguero F.J. , Carrasco L. , Gómez-Villamandos J.C. . ( 2005;). Evolution of T lymphocytes and cytokine expression in classical swine fever (CSF) virus infection. J Comp Pathol 132: 249–260 [CrossRef] [PubMed].
    [Google Scholar]
  34. Summerfield A. , Alves M. , Ruggli N. , de Bruin M.G.M. , McCullough K.C. . ( 2006;). High IFN-α responses associated with depletion of lymphocytes and natural IFN-producing cells during classical swine fever. J Interferon Cytokine Res 26: 248–255 [CrossRef] [PubMed].
    [Google Scholar]
  35. Takahashi K. , Asabe S. , Wieland S. , Garaigorta U. , Gastaminza P. , Isogawa M. , Chisari F.V. . ( 2010;). Plasmacytoid dendritic cells sense hepatitis C virus-infected cells, produce interferon, and inhibit infection. Proc Natl Acad Sci U S A 107: 7431–7436 [CrossRef] [PubMed].
    [Google Scholar]
  36. Wang Y. , Wang Q. , Lu X. , Zhang C. , Fan X. , Pan Z. , Xu L. , Wen G. , Ning Y. , other authors . ( 2008;). 12-nt insertion in 3′ untranslated region leads to attenuation of classic swine fever virus and protects host against lethal challenge. Virology 374: 390–398 [CrossRef] [PubMed].
    [Google Scholar]
  37. Zhang Y. , Guo Y. , Lv K. , Wang K. , Sun S. . ( 2008;). Molecular cloning and functional characterization of porcine toll-like receptor 7 involved in recognition of single-stranded RNA virus/ssRNA. Mol Immunol 45: 1184–1190 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000129
Loading
/content/journal/jgv/10.1099/vir.0.000129
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error