1887

Abstract

Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an ‘end-less’ state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing evidence that HSV-1 and VZV latency is epigenetically regulated. models that permit pathway analysis and identification of both epigenetic modulations and global transcriptional mechanisms of HSV-1 and VZV latency hold much promise for our future understanding in this complex area. This review summarizes the molecular biology of HSV-1 and VZV latency and reactivation, and also presents future directions for study.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000128
2015-07-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/7/1581.html?itemId=/content/journal/jgv/10.1099/vir.0.000128&mimeType=html&fmt=ahah

References

  1. Abendroth A. , Lin I. , Slobedman B. , Ploegh H. , Arvin A.M. . ( 2001;). Varicella-zoster virus retains major histocompatibility complex class I proteins in the Golgi compartment of infected cells. J Virol 75: 4878–4888.[CrossRef]
    [Google Scholar]
  2. Abmayr S.M. , Feldman L.D. , Roeder R.G. . ( 1985;). In vitro stimulation of specific RNA polymerase II-mediated transcription by the pseudorabies virus immediate early protein. Cell 43: 821–829.[CrossRef]
    [Google Scholar]
  3. Aggarwal A. , Miranda-Saksena M. , Boadle R.A. , Kelly B.J. , Diefenbach R.J. , Alam W. , Cunningham A.L. . ( 2012;). Ultrastructural visualization of individual tegument protein dissociation during entry of herpes simplex virus 1 into human and rat dorsal root ganglion neurons. J Virol 86: 6123–6137.[CrossRef]
    [Google Scholar]
  4. Allen S.J. , Hamrah P. , Gate D. , Mott K.R. , Mantopoulos D. , Zheng L. , Town T. , Jones C. , von Andrian U.H. , other authors . ( 2011;). The role of LAT in increased CD8+T cell exhaustion in trigeminal ganglia of mice latently infected with herpes simplex virus 1. J Virol 85: 4184–4197.[CrossRef]
    [Google Scholar]
  5. Allen S.J. , Rhode-Kurnow A. , Mott K.R. , Jiang X. , Carpenter D. , Rodriguez-Barbosa J.I. , Jones C. , Wechsler S.L. , Ware C.F. , Ghiasi H. . ( 2014;). Interactions between herpesvirus entry mediator (TNFRSF14) and latency-associated transcript during herpes simplex virus 1 latency. J Virol 88: 1961–1971.[CrossRef]
    [Google Scholar]
  6. Ambagala A.P. , Cohen J.I. . ( 2007;). Varicella-zoster virus IE63, a major viral latency protein, is required to inhibit the alpha interferon-induced antiviral response. J Virol 81: 7844–7851.[CrossRef]
    [Google Scholar]
  7. Ambagala A.P. , Bosma T. , Ali M.A. , Poustovoitov M. , Chen J.J. , Gershon M.D. , Adams P.D. , Cohen J.I. . ( 2009;). Varicella-zoster virus immediate-early 63 protein interacts with human antisilencing function 1 protein and alters its ability to bind histones H3.1 and H3.3. J Virol 83: 200–209.[CrossRef]
    [Google Scholar]
  8. Amelio A.L. , Giordani N.V. , Kubat N.J. , O'neil J.E. , Bloom D.C. . ( 2006a;). Deacetylation of the herpes simplex virus type 1 latency-associated transcript (LAT) enhancer and a decrease in LAT abundance precede an increase in ICP0 transcriptional permissiveness at early times postexplant. J Virol 80: 2063–2068.[CrossRef]
    [Google Scholar]
  9. Amelio A.L. , McAnany P.K. , Bloom D.C. . ( 2006b;). A chromatin insulator-like element in the herpes simplex virus type 1 latency-associated transcript region binds CCCTC-binding factor and displays enhancer-blocking and silencing activities. J Virol 80: 2358–2368.[CrossRef]
    [Google Scholar]
  10. Antinone S.E. , Smith G.A. . ( 2010;). Retrograde axon transport of herpes simplex virus and pseudorabies virus: a live-cell comparative analysis. J Virol 84: 1504–1512.[CrossRef]
    [Google Scholar]
  11. Azarkh Y. , Bos N. , Gilden D. , Cohrs R.J. . ( 2012;). Human trigeminal ganglionic explants as a model to study alphaherpesvirus reactivation. J Neurovirol 18: 456–461.[CrossRef]
    [Google Scholar]
  12. Baird N.L. , Bowlin J.L. , Cohrs R.J. , Gilden D. , Jones K.L. . ( 2014a;). Comparison of varicella-zoster virus RNA sequences in human neurons and fibroblasts. J Virol 88: 5877–5880.[CrossRef]
    [Google Scholar]
  13. Baird N.L. , Bowlin J.L. , Yu X. , Jonjić S. , Haas J. , Cohrs R.J. , Gilden D. . ( 2014b;). Varicella zoster virus DNA does not accumulate in infected human neurons. Virology 458-459: 1–3.[CrossRef]
    [Google Scholar]
  14. Baringer J.R. , Swoveland P. . ( 1973;). Recovery of herpes-simplex virus from human trigeminal ganglions. N Engl J Med 288: 648–650.[CrossRef]
    [Google Scholar]
  15. Bastian F.O. , Rabson A.S. , Yee C.L. , Tralka T.S. . ( 1972;). Herpesvirus hominis: isolation from human trigeminal ganglion. Science 178: 306–307.[CrossRef]
    [Google Scholar]
  16. Batterson W. , Roizman B. . ( 1983;). Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha genes. J Virol 46: 371–377.
    [Google Scholar]
  17. Bertke A.S. , Swanson S.M. , Chen J. , Imai Y. , Kinchington P.R. , Margolis T.P. . ( 2011;). A5-positive primary sensory neurons are nonpermissive for productive infection with herpes simplex virus 1 in vitro . J Virol 85: 6669–6677.[CrossRef]
    [Google Scholar]
  18. Bertke A.S. , Ma A. , Margolis M.S. , Margolis T.P. . ( 2013;). Different mechanisms regulate productive herpes simplex virus 1 (HSV-1) and HSV-2 infections in adult trigeminal neurons. J Virol 87: 6512–6516.[CrossRef]
    [Google Scholar]
  19. Bibor-Hardy V. , Sakr F. . ( 1989;). A 165 kd protein of the herpes simplex virion shares a common epitope with the regulatory protein, ICP4. Biochem Biophys Res Commun 163: 124–130.[CrossRef]
    [Google Scholar]
  20. Bigley N.J. . ( 2014;). Complexity of interferon-γ interactions with HSV-1. Front Immunol 5: 15.[CrossRef]
    [Google Scholar]
  21. Birlea M. , Arendt G. , Orhan E. , Schmid D.S. , Bellini W.J. , Schmidt C. , Gilden D. , Cohrs R.J. . ( 2011;). Subclinical reactivation of varicella zoster virus in all stages of HIV infection. J Neurol Sci 304: 22–24.[CrossRef]
    [Google Scholar]
  22. Birmanns B. , Reibstein I. , Steiner I. . ( 1993;). Characterization of an in vivo reactivation model of herpes simplex virus from mice trigeminal ganglia. J Gen Virol 74: 2487–2491.[CrossRef]
    [Google Scholar]
  23. Bloom D.C. , Giordani N.V. , Kwiatkowski D.L. . ( 2010;). Epigenetic regulation of latent HSV-1 gene expression. Biochim Biophys Acta 1799: 246–256.[CrossRef]
    [Google Scholar]
  24. Brazeau E. , Mahalingam R. , Gilden D. , Wellish M. , Kaufer B.B. , Osterrieder N. , Pugazhenthi S. . ( 2010;). Varicella-zoster virus-induced apoptosis in MeWo cells is accompanied by down-regulation of Bcl-2 expression. J Neurovirol 16: 133–140.[CrossRef]
    [Google Scholar]
  25. Camarena V. , Kobayashi M. , Kim J.Y. , Roehm P. , Perez R. , Gardner J. , Wilson A.C. , Mohr I. , Chao M.V. . ( 2010;). Nature and duration of growth factor signaling through receptor tyrosine kinases regulates HSV-1 latency in neurons. Cell Host Microbe 8: 320–330.[CrossRef]
    [Google Scholar]
  26. Carpenter J.E. , Henderson E.P. , Grose C. . ( 2009;). Enumeration of an extremely high particle-to-PFU ratio for varicella-zoster virus. J Virol 83: 6917–6921.[CrossRef]
    [Google Scholar]
  27. Caudill J.W. , Romanowski E. , Araullo-Cruz T. , Gordon Y.J. . ( 1986;). Recovery of a latent HSV-1 thymidine kinase negative strain following iontophoresis and co-cultivation in the ocularly-infected rabbit model. Curr Eye Res 5: 41–45.[CrossRef]
    [Google Scholar]
  28. Caughman G.B. , Robertson A.T. , Gray W.L. , Sullivan D.C. , O'Callaghan D.J. . ( 1988;). Characterization of equine herpesvirus type 1 immediate early proteins. Virology 163: 563–571.[CrossRef]
    [Google Scholar]
  29. Chen J.J. , Zhu Z. , Gershon A.A. , Gershon M.D. . ( 2004;). Mannose 6-phosphate receptor dependence of varicella zoster virus infection in vitro and in the epidermis during varicella and zoster. Cell 119: 915–926.[CrossRef]
    [Google Scholar]
  30. Chen Q. , Lin L. , Smith S. , Huang J. , Berger S.L. , Zhou J. . ( 2007;). CTCF-dependent chromatin boundary element between the latency-associated transcript and ICP0 promoters in the herpes simplex virus type 1 genome. J Virol 81: 5192–5201.[CrossRef]
    [Google Scholar]
  31. Chen J.J. , Gershon A.A. , Li Z. , Cowles R.A. , Gershon M.D. . ( 2011;). Varicella zoster virus (VZV) infects and establishes latency in enteric neurons. J Neurovirol 17: 578–589.[CrossRef]
    [Google Scholar]
  32. Chen H.S. , Wikramasinghe P. , Showe L. , Lieberman P.M. . ( 2012;). Cohesins repress Kaposi's sarcoma-associated herpesvirus immediate early gene transcription during latency. J Virol 86: 9454–9464.[CrossRef]
    [Google Scholar]
  33. Chernukhin I. , Shamsuddin S. , Kang S.Y. , Bergström R. , Kwon Y.W. , Yu W. , Whitehead J. , Mukhopadhyay R. , Docquier F. , other authors . ( 2007;). CTCF interacts with and recruits the largest subunit of RNA polymerase II to CTCF target sites genome-wide. Mol Cell Biol 27: 1631–1648.[CrossRef]
    [Google Scholar]
  34. Cheung P. , Ellison K.S. , Verity R. , Smiley J.R. . ( 2000;). Herpes simplex virus ICP27 induces cytoplasmic accumulation of unspliced polyadenylated alpha-globin pre-mRNA in infected HeLa cells. J Virol 74: 2913–2919.[CrossRef]
    [Google Scholar]
  35. Clarke P. , Beer T. , Cohrs R. , Gilden D.H. . ( 1995;). Configuration of latent varicella-zoster virus DNA. J Virol 69: 8151–8154.
    [Google Scholar]
  36. Cliffe A.R. , Knipe D.M. . ( 2008;). Herpes simplex virus ICP0 promotes both histone removal and acetylation on viral DNA during lytic infection. J Virol 82: 12030–12038.[CrossRef]
    [Google Scholar]
  37. Cliffe A.R. , Garber D.A. , Knipe D.M. . ( 2009;). Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters. J Virol 83: 8182–8190.[CrossRef]
    [Google Scholar]
  38. Cliffe A.R. , Coen D.M. , Knipe D.M. . ( 2013;). Kinetics of facultative heterochromatin and polycomb group protein association with the herpes simplex viral genome during establishment of latent infection. MBio 4: e00590-12.[CrossRef]
    [Google Scholar]
  39. Cohen J.I. . ( 2010;). The varicella-zoster virus genome. . In Varicella-Zoster Virus, pp. 1–14. Edited by Abendroth A. , Arvin A. M. , Moffat J. F. . New York: Springer;.[CrossRef]
    [Google Scholar]
  40. Cohen J.I. , Seidel K. . ( 1994;). Varicella-zoster virus (VZV) open reading frame 10 protein, the homolog of the essential herpes simplex virus protein VP16, is dispensable for VZV replication in vitro . J Virol 68: 7850–7858.
    [Google Scholar]
  41. Cohrs R. , Mahalingam R. , Dueland A.N. , Wolf W. , Wellish M. , Gilden D.H. . ( 1992;). Restricted transcription of varicella-zoster virus in latently infected human trigeminal and thoracic ganglia. J Infect Dis 166: (Suppl. 1), S24–S29.[CrossRef]
    [Google Scholar]
  42. Cohrs R.J. , Barbour M. , Gilden D.H. . ( 1996;). Varicella-zoster virus (VZV) transcription during latency in human ganglia: detection of transcripts mapping to genes 21, 29, 62, and 63 in a cDNA library enriched for VZV RNA. J Virol 70: 2789–2796.
    [Google Scholar]
  43. Cohrs R.J. , Randall J. , Smith J. , Gilden D.H. , Dabrowski C. , van Der Keyl H. , Tal-Singer R. . ( 2000;). Analysis of individual human trigeminal ganglia for latent herpes simplex virus type 1 and varicella-zoster virus nucleic acids using real-time PCR. J Virol 74: 11464–11471.[CrossRef]
    [Google Scholar]
  44. Cohrs R.J. , Gilden D.H. , Kinchington P.R. , Grinfeld E. , Kennedy P.G. . ( 2003a;). Varicella-zoster virus gene 66 transcription and translation in latently infected human ganglia. J Virol 77: 6660–6665.[CrossRef]
    [Google Scholar]
  45. Cohrs R.J. , Hurley M.P. , Gilden D.H. . ( 2003b;). Array analysis of viral gene transcription during lytic infection of cells in tissue culture with varicella-zoster virus. J Virol 77: 11718–11732.[CrossRef]
    [Google Scholar]
  46. Cohrs R.J. , Laguardia J.J. , Gilden D. . ( 2005;). Distribution of latent herpes simplex virus type-1 and varicella zoster virus DNA in human trigeminal ganglia. Virus Genes 31: 223–227.[CrossRef]
    [Google Scholar]
  47. Cohrs R.J. , Mehta S.K. , Schmid D.S. , Gilden D.H. , Pierson D.L. . ( 2008;). Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. J Med Virol 80: 1116–1122.[CrossRef]
    [Google Scholar]
  48. Cuchet-Lourenço D. , Vanni E. , Glass M. , Orr A. , Everett R.D. . ( 2012;). Herpes simplex virus 1 ubiquitin ligase ICP0 interacts with PML isoform I and induces its SUMO-independent degradation. J Virol 86: 11209–11222.[CrossRef]
    [Google Scholar]
  49. da Silva L.F. , Sinani D. , Jones C. . ( 2012;). ICP27 protein encoded by bovine herpesvirus type 1 (bICP27) interferes with promoter activity of the bovine genes encoding beta interferon 1 (IFN-β1) and IFN-β3. Virus Res 169: 162–168.[CrossRef]
    [Google Scholar]
  50. Danaher R.J. , Jacob R.J. , Steiner M.R. , Allen W.R. , Hill J.M. , Miller C.S. . ( 2005;). Histone deacetylase inhibitors induce reactivation of herpes simplex virus type 1 in a latency-associated transcript-independent manner in neuronal cells. J Neurovirol 11: 306–317.[CrossRef]
    [Google Scholar]
  51. Dargan D.J. , Patel A.H. , Subak-Sharpe J.H. . ( 1995;). PREPs: herpes simplex virus type 1-specific particles produced by infected cells when viral DNA replication is blocked. J Virol 69: 4924–4932.
    [Google Scholar]
  52. Davison A.J. , Scott J.E. . ( 1986;). The complete DNA sequence of varicella-zoster virus. J Gen Virol 67: 1759–1816.[CrossRef]
    [Google Scholar]
  53. Debrus S. , Sadzot-Delvaux C. , Nikkels A.F. , Piette J. , Rentier B. . ( 1995;). Varicella-zoster virus gene 63 encodes an immediate-early protein that is abundantly expressed during latency. J Virol 69: 3240–3245.
    [Google Scholar]
  54. Di Valentin E. , Bontems S. , Habran L. , Jolois O. , Markine-Goriaynoff N. , Vanderplasschen A. , Sadzot-Delvaux C. , Piette J. . ( 2005;). Varicella-zoster virus IE63 protein represses the basal transcription machinery by disorganizing the pre-initiation complex. Biol Chem 386: 255–267.[CrossRef]
    [Google Scholar]
  55. Didych D.A. , Kotova E.S. , Akopov S.B. , Nikolaev L.G. , Sverdlov E.D. . ( 2012;). DNA fragments binding CTCF in vitro in vivo are capable of blocking enhancer activity. BMC Res Notes 5: 178.[CrossRef]
    [Google Scholar]
  56. Döhner K. , Radtke K. , Schmidt S. , Sodeik B. . ( 2006;). Eclipse phase of herpes simplex virus type 1 infection: efficient dynein-mediated capsid transport without the small capsid protein VP26. J Virol 80: 8211–8224.[CrossRef]
    [Google Scholar]
  57. Dressler G.R. , Rock D.L. , Fraser N.W. . ( 1987;). Latent herpes simplex virus type 1 DNA is not extensively methylated in vivo . J Gen Virol 68: 1761–1765.[CrossRef]
    [Google Scholar]
  58. Du T. , Zhou G. , Khan S. , Gu H. , Roizman B. . ( 2010;). Disruption of HDAC/CoREST/REST repressor by dnREST reduces genome silencing and increases virulence of herpes simplex virus. Proc Natl Acad Sci U S A 107: 15904–15909.[CrossRef]
    [Google Scholar]
  59. Du T. , Zhou G. , Roizman B. . ( 2011;). HSV-1 gene expression from reactivated ganglia is disordered and concurrent with suppression of latency-associated transcript and miRNAs. Proc Natl Acad Sci U S A 108: 18820–18824.[CrossRef]
    [Google Scholar]
  60. Du T. , Zhou G. , Roizman B. . ( 2012;). Induction of apoptosis accelerates reactivation of latent HSV-1 in ganglionic organ cultures and replication in cell cultures. Proc Natl Acad Sci U S A 109: 14616–14621.[CrossRef]
    [Google Scholar]
  61. Du T. , Zhou G. , Roizman B. . ( 2013;). Modulation of reactivation of latent herpes simplex virus 1 in ganglionic organ cultures by p300/CBP and STAT3. Proc Natl Acad Sci U S A 110: E2621–E2628.[CrossRef]
    [Google Scholar]
  62. Dueland A.N. , Martin J.R. , Devlin M.E. , Wellish M. , Mahalingam R. , Cohrs R. , Soike K.F. , Gilden D.H. . ( 1992;). Acute simian varicella infection. Clinical, laboratory, pathologic, and virologic features. Lab Invest 66: 762–773.
    [Google Scholar]
  63. Dukhovny A. , Sloutskin A. , Markus A. , Yee M.B. , Kinchington P.R. , Goldstein R.S. . ( 2012;). Varicella-zoster virus infects human embryonic stem cell-derived neurons and neurospheres but not pluripotent embryonic stem cells or early progenitors. J Virol 86: 3211–3218.[CrossRef]
    [Google Scholar]
  64. Efstathiou S. , Minson A.C. , Field H.J. , Anderson J.R. , Wildy P. . ( 1986;). Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans. J Virol 57: 446–455.
    [Google Scholar]
  65. Eisfeld A.J. , Yee M.B. , Erazo A. , Abendroth A. , Kinchington P.R. . ( 2007;). Downregulation of class I major histocompatibility complex surface expression by varicella-zoster virus involves open reading frame 66 protein kinase-dependent and -independent mechanisms. J Virol 81: 9034–9049.[CrossRef]
    [Google Scholar]
  66. Elliott G. , Mouzakitis G. , O'Hare P. . ( 1995;). VP16 interacts via its activation domain with VP22, a tegument protein of herpes simplex virus, and is relocated to a novel macromolecular assembly in coexpressing cells. J Virol 69: 7932–7941.
    [Google Scholar]
  67. Erazo A. , Yee M.B. , Osterrieder N. , Kinchington P.R. . ( 2008;). Varicella-zoster virus open reading frame 66 protein kinase is required for efficient viral growth in primary human corneal stromal fibroblast cells. J Virol 82: 7653–7665.[CrossRef]
    [Google Scholar]
  68. Ertel M.K. , Cammarata A.L. , Hron R.J. , Neumann D.M. . ( 2012;). CTCF occupation of the herpes simplex virus 1 genome is disrupted at early times postreactivation in a transcription-dependent manner. J Virol 86: 12741–12759.[CrossRef]
    [Google Scholar]
  69. Everett R.D. , Dunlop M. . ( 1984;). Trans activation of plasmid-borne promoters by adenovirus and several herpes group viruses. Nucleic Acids Res 12: 5969–5978.[CrossRef]
    [Google Scholar]
  70. Everett R.D. , Maul G.G. . ( 1994;). HSV-1 IE protein Vmw110 causes redistribution of PML. EMBO J 13: 5062–5069.
    [Google Scholar]
  71. Everett R.D. , Murray J. . ( 2005;). ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection. J Virol 79: 5078–5089.[CrossRef]
    [Google Scholar]
  72. Everett R.D. , Rechter S. , Papior P. , Tavalai N. , Stamminger T. , Orr A. . ( 2006;). PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol 80: 7995–8005.[CrossRef]
    [Google Scholar]
  73. Everett R.D. , Boutell C. , McNair C. , Grant L. , Orr A. . ( 2010;). Comparison of the biological and biochemical activities of several members of the alphaherpesvirus ICP0 family of proteins. J Virol 84: 3476–3487.[CrossRef]
    [Google Scholar]
  74. Farrell M.J. , Margolis T.P. , Gomes W.A. , Feldman L.T. . ( 1994;). Effect of the transcription start region of the herpes simplex virus type 1 latency-associated transcript promoter on expression of productively infected neurons in vivo . J Virol 68: 5337–5343.
    [Google Scholar]
  75. Flores O. , Nakayama S. , Whisnant A.W. , Javanbakht H. , Cullen B.R. , Bloom D.C. . ( 2013;). Mutational inactivation of herpes simplex virus 1 microRNAs identifies viral mRNA targets and reveals phenotypic effects in culture. J Virol 87: 6589–6603.[CrossRef]
    [Google Scholar]
  76. Fraefel C. , Ackermann M. , Schwyzer M. . ( 1994;). Identification of the bovine herpesvirus 1 circ protein, a myristylated and virion-associated polypeptide which is not essential for virus replication in cell culture. J Virol 68: 8082–8088.
    [Google Scholar]
  77. Freiman R.N. , Herr W. . ( 1997;). Viral mimicry: common mode of association with HCF by VP16 and the cellular protein LZIP. Genes Dev 11: 3122–3127.[CrossRef]
    [Google Scholar]
  78. Gan L. , Wang M. , Chen J.J. , Gershon M.D. , Gershon A.A. . ( 2014;). Infected peripheral blood mononuclear cells transmit latent varicella zoster virus infection to the guinea pig enteric nervous system. J Neurovirol 20: 442–456.[CrossRef]
    [Google Scholar]
  79. Garvey C.E. , McGowin C.L. , Foster T.P. . ( 2014;). Development and evaluation of SYBR Green-I based quantitative PCR assays for herpes simplex virus type 1 whole transcriptome analysis. J Virol Methods 201: 101–111.[CrossRef]
    [Google Scholar]
  80. Gary L. , Gilden D.H. , Cohrs R.J. . ( 2006;). Epigenetic regulation of varicella-zoster virus open reading frames 62 and 63 in latently infected human trigeminal ganglia. J Virol 80: 4921–4926.[CrossRef]
    [Google Scholar]
  81. Gaszner M. , Felsenfeld G. . ( 2006;). Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 7: 703–713.[CrossRef]
    [Google Scholar]
  82. Gebhardt B.M. , Halford W.P. . ( 2005;). Evidence that spontaneous reactivation of herpes virus does not occur in mice. Virol J 2: 67.[CrossRef]
    [Google Scholar]
  83. Gershon A.A. , Chen J. , Gershon M.D. . ( 2008;). A model of lytic, latent, and reactivating varicella-zoster virus infections in isolated enteric neurons. J Infect Dis 197 (Suppl 2:., S61–S65.[CrossRef]
    [Google Scholar]
  84. Gershon A.A. , Chen J. , Davis L. , Krinsky C. , Cowles R. , Reichard R. , Gershon M. . ( 2012;). Latency of varicella zoster virus in dorsal root, cranial, and enteric ganglia in vaccinated children. Trans Am Clin Climatol Assoc 123: 17–33.
    [Google Scholar]
  85. Gibbons J.L. , Miller H.G. , Stanton J.B. . ( 1956;). Para-infectious encephalomyelitis and related syndromes; a critical review of the neurological complications of certain specific fevers. Q J Med 25: 427–505.
    [Google Scholar]
  86. Gilden D. , Nagel M.A. , Cohrs R.J. , Mahalingam R. . ( 2013;). The variegate neurological manifestations of varicella zoster virus infection. Curr Neurol Neurosci Rep 13: 374.[CrossRef]
    [Google Scholar]
  87. Gilden D. , White T. , Khmeleva N. , Heintzman A. , Choe A. , Boyer P.J. , Grose C. , Carpenter J.E. , Rempel A. , other authors . ( 2015;). Prevalence and distribution of VZV in temporal arteries of patients with giant cell arteritis. Neurology [Epub ahead of print].
    [Google Scholar]
  88. Goodwin T.J. , McCarthy M. , Osterrieder N. , Cohrs R.J. , Kaufer B.B. . ( 2013;). Three-dimensional normal human neural progenitor tissue-like assemblies: a model of persistent varicella-zoster virus infection. PLoS Pathog 9: e1003512.[CrossRef]
    [Google Scholar]
  89. Gray W.L. , Baumann R.P. , Robertson A.T. , O'Callaghan D.J. , Staczek J. . ( 1987;). Characterization and mapping of equine herpesvirus type 1 immediate early, early, and late transcripts. Virus Res 8: 233–244.[CrossRef]
    [Google Scholar]
  90. Grigoryan S. , Kinchington P.R. , Yang I.H. , Selariu A. , Zhu H. , Yee M. , Goldstein R.S. . ( 2012;). Retrograde axonal transport of VZV: kinetic studies in hESC-derived neurons. J Neurovirol 18: 462–470.[CrossRef]
    [Google Scholar]
  91. Grinfeld E. , Kennedy P.G. . ( 2004;). Translation of varicella-zoster virus genes during human ganglionic latency. Virus Genes 29: 317–319.[CrossRef]
    [Google Scholar]
  92. Grose C. . ( 1990;). Glycoproteins encoded by varicella-zoster virus: biosynthesis, phosphorylation, and intracellular trafficking. Annu Rev Microbiol 44: 59–80.[CrossRef]
    [Google Scholar]
  93. Grose C. , Brunel P.A. . ( 1978;). Varicella-zoster virus: isolation and propagation in human melanoma cells at 36 and 32 degrees C. Infect Immun 19: 199–203.
    [Google Scholar]
  94. Grose C. , Perrotta D.M. , Brunell P.A. , Smith G.C. . ( 1979;). Cell-free varicella-zoster virus in cultured human melanoma cells. J Gen Virol 43: 15–27.[CrossRef]
    [Google Scholar]
  95. Grose C. , Yu X. , Cohrs R.J. , Carpenter J.E. , Bowlin J.L. , Gilden D. . ( 2013;). Aberrant virion assembly and limited glycoprotein C production in varicella-zoster virus-infected neurons. J Virol 87: 9643–9648.[CrossRef]
    [Google Scholar]
  96. Gu H. , Roizman B. . ( 2003;). The degradation of promyelocytic leukemia and Sp100 proteins by herpes simplex virus 1 is mediated by the ubiquitin-conjugating enzyme UbcH5a. Proc Natl Acad Sci U S A 100: 8963–8968.[CrossRef]
    [Google Scholar]
  97. Gu H. , Liang Y. , Mandel G. , Roizman B. . ( 2005;). Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells. Proc Natl Acad Sci U S A 102: 7571–7576.[CrossRef]
    [Google Scholar]
  98. Hafezi W. , Lorentzen E.U. , Eing B.R. , Müller M. , King N.J. , Klupp B. , Mettenleiter T.C. , Kühn J.E. . ( 2012;). Entry of herpes simplex virus type 1 (HSV-1) into the distal axons of trigeminal neurons favors the onset of nonproductive, silent infection. PLoS Pathog 8: e1002679.[CrossRef]
    [Google Scholar]
  99. Halling G. , Giannini C. , Britton J.W. , Lee R.W. , Watson R.E. Jr , Terrell C.L. , Parney I.F. , Buckingham E.M. , Carpenter J.E. , Grose C. . ( 2014;). Focal encephalitis following varicella-zoster virus reactivation without rash in a healthy immunized young adult. J Infect Dis 210: 713–716.[CrossRef]
    [Google Scholar]
  100. Harkness J.M. , Kader M. , DeLuca N.A. . ( 2014;). Transcription of the herpes simplex virus 1 genome during productive and quiescent infection of neuronal and nonneuronal cells. J Virol 88: 6847–6861.[CrossRef]
    [Google Scholar]
  101. Held K. , Junker A. , Dornmair K. , Meinl E. , Sinicina I. , Brandt T. , Theil D. , Derfuss T. . ( 2011;). Expression of herpes simplex virus 1-encoded microRNAs in human trigeminal ganglia and their relation to local T-cell infiltrates. J Virol 85: 9680–9685.[CrossRef]
    [Google Scholar]
  102. Held K. , Eiglmeier I. , Himmelein S. , Sinicina I. , Brandt T. , Theil D. , Dornmair K. , Derfuss T. . ( 2012;). Clonal expansions of CD8? T cells in latently HSV-1-infected human trigeminal ganglia. J Neurovirol 18: 62–68.[CrossRef]
    [Google Scholar]
  103. Hill A. , Jugovic P. , York I. , Russ G. , Bennink J. , Yewdell J. , Ploegh H. , Johnson D. . ( 1995;). Herpes simplex virus turns off the TAP to evade host immunity. Nature 375: 411–415.[CrossRef]
    [Google Scholar]
  104. Hood C. , Cunningham A.L. , Slobedman B. , Arvin A.M. , Sommer M.H. , Kinchington P.R. , Abendroth A. . ( 2006;). Varicella-zoster virus ORF63 inhibits apoptosis of primary human neurons. J Virol 80: 1025–1031.[CrossRef]
    [Google Scholar]
  105. Hou C. , Zhao H. , Tanimoto K. , Dean A. . ( 2008;). CTCF-dependent enhancer-blocking by alternative chromatin loop formation. Proc Natl Acad Sci U S A 105: 20398–20403.[CrossRef]
    [Google Scholar]
  106. Imai Y. , Apakupakul K. , Krause P.R. , Halford W.P. , Margolis T.P. . ( 2009;). Investigation of the mechanism by which herpes simplex virus type 1 LAT sequences modulate preferential establishment of latent infection in mouse trigeminal ganglia. J Virol 83: 7873–7882.[CrossRef]
    [Google Scholar]
  107. Inman M. , Perng G.C. , Henderson G. , Ghiasi H. , Nesburn A.B. , Wechsler S.L. , Jones C. . ( 2001;). Region of herpes simplex virus type 1 latency-associated transcript sufficient for wild-type spontaneous reactivation promotes cell survival in tissue culture. J Virol 75: 3636–3646.[CrossRef]
    [Google Scholar]
  108. Isaac A. , Wilcox K.W. , Taylor J.L. . ( 2006;). SP100B, a repressor of gene expression preferentially binds to DNA with unmethylated CpGs. J Cell Biochem 98: 1106–1122.[CrossRef]
    [Google Scholar]
  109. Javier R.T. , Stevens J.G. , Dissette V.B. , Wagner E.K. . ( 1988;). A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state. Virology 166: 254–257.[CrossRef]
    [Google Scholar]
  110. Jiang X. , Chentoufi A.A. , Hsiang C. , Carpenter D. , Osorio N. , BenMohamed L. , Fraser N.W. , Jones C. , Wechsler S.L. . ( 2011;). The herpes simplex virus type 1 latency-associated transcript can protect neuron-derived C1300 and Neuro2A cells from granzyme B-induced apoptosis and CD8 T-cell killing. J Virol 85: 2325–2332.[CrossRef]
    [Google Scholar]
  111. Jones M. , Dry I.R. , Frampton D. , Singh M. , Kanda R.K. , Yee M.B. , Kellam P. , Hollinshead M. , Kinchington P.R. , other authors . ( 2014;). RNA-seq analysis of host and viral gene expression highlights interaction between varicella zoster virus and keratinocyte differentiation. PLoS Pathog 10: e1003896.[CrossRef]
    [Google Scholar]
  112. Jugovic P. , Hill A.M. , Tomazin R. , Ploegh H. , Johnson D.C. . ( 1998;). Inhibition of major histocompatibility complex class I antigen presentation in pig and primate cells by herpes simplex virus type 1 and 2 ICP47. J Virol 72: 5076–5084.
    [Google Scholar]
  113. Jurak I. , Kramer M.F. , Mellor J.C. , van Lint A.L. , Roth F.P. , Knipe D.M. , Coen D.M. . ( 2010;). Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2. J Virol 84: 4659–4672.[CrossRef]
    [Google Scholar]
  114. Jurak I. , Silverstein L.B. , Sharma M. , Coen D.M. . ( 2012;). Herpes simplex virus is equipped with RNA- and protein-based mechanisms to repress expression of ATRX, an effector of intrinsic immunity. J Virol 86: 10093–10102.[CrossRef]
    [Google Scholar]
  115. Kagey M.H. , Newman J.J. , Bilodeau S. , Zhan Y. , Orlando D.A. , van Berkum N.L. , Ebmeier C.C. , Goossens J. , Rahl P.B. , other authors . ( 2010;). Mediator and cohesin connect gene expression and chromatin architecture. Nature 467: 430–435.[CrossRef]
    [Google Scholar]
  116. Kang H. , Lieberman P.M. . ( 2011;). Mechanism of glycyrrhizic acid inhibition of Kaposi's sarcoma-associated herpesvirus: disruption of CTCF-cohesin-mediated RNA polymerase II pausing and sister chromatid cohesion. J Virol 85: 11159–11169.[CrossRef]
    [Google Scholar]
  117. Kang S. , Seo S. , Hill J. , Kwon B. , Lee H. , Cho H. , Vinay D. , Kwon B. . ( 2003;). Changes in gene expression in latent HSV-1-infected rabbit trigeminal ganglia following epinephrine iontophoresis. Curr Eye Res 26: 225–229.[CrossRef]
    [Google Scholar]
  118. Kaufer B.B. , Smejkal B. , Osterrieder N. . ( 2010;). The varicella-zoster virus ORFS/L (ORF0) gene is required for efficient viral replication and contains an element involved in DNA cleavage. J Virol 84: 11661–11669.[CrossRef]
    [Google Scholar]
  119. Kaufman H.E. , Azcuy A.M. , Varnell E.D. , Sloop G.D. , Thompson H.W. , Hill J.M. . ( 2005;). HSV-1 DNA in tears and saliva of normal adults. Invest Ophthalmol Vis Sci 46: 241–247.[CrossRef]
    [Google Scholar]
  120. Kemble G.W. , Annunziato P. , Lungu O. , Winter R.E. , Cha T.A. , Silverstein S.J. , Spaete R.R. . ( 2000;). Open reading frame S/L of varicella-zoster virus encodes a cytoplasmic protein expressed in infected cells. J Virol 74: 11311–11321.[CrossRef]
    [Google Scholar]
  121. Kennedy P.G. , Cohrs R.J. . ( 2010;). Varicella-zoster virus human ganglionic latency: a current summary. J Neurovirol 16: 411–418.[CrossRef]
    [Google Scholar]
  122. Kennedy P.G. , Steiner I. . ( 1994;). A molecular and cellular model to explain the differences in reactivation from latency by herpes simplex and varicella-zoster viruses. Neuropathol Appl Neurobiol 20: 368–374.[CrossRef]
    [Google Scholar]
  123. Kennedy P.G. , Grinfeld E. , Gow J.W. . ( 1998;). Latent varicella-zoster virus is located predominantly in neurons in human trigeminal ganglia. Proc Natl Acad Sci U S A 95: 4658–4662.[CrossRef]
    [Google Scholar]
  124. Kennedy P.G. , Grinfeld E. , Bell J.E. . ( 2000;). Varicella-zoster virus gene expression in latently infected and explanted human ganglia. J Virol 74: 11893–11898.[CrossRef]
    [Google Scholar]
  125. Kennedy P.G. , Grinfeld E. , Bontems S. , Sadzot-Delvaux C. . ( 2001;). Varicella-zoster virus gene expression in latently infected rat dorsal root ganglia. Virology 289: 218–223.[CrossRef]
    [Google Scholar]
  126. Kennedy P.G. , Grinfeld E. , Craigon M. , Vierlinger K. , Roy D. , Forster T. , Ghazal P. . ( 2005;). Transcriptomal analysis of varicella-zoster virus infection using long oligonucleotide-based microarrays. J Gen Virol 86: 2673–2684.[CrossRef]
    [Google Scholar]
  127. Kim J.Y. , Mandarino A. , Chao M.V. , Mohr I. , Wilson A.C. . ( 2012;). Transient reversal of episome silencing precedes VP16-dependent transcription during reactivation of latent HSV-1 in neurons. PLoS Pathog 8: e1002540.[CrossRef]
    [Google Scholar]
  128. Kinchington P.R. , Reinhold W.C. , Casey T.A. , Straus S.E. , Hay J. , Ruyechan W.T. . ( 1985;). Inversion and circularization of the varicella-zoster virus genome. J Virol 56: 194–200.
    [Google Scholar]
  129. Kinchington P.R. , Hougland J.K. , Arvin A.M. , Ruyechan W.T. , Hay J. . ( 1992;). The varicella-zoster virus immediate-early protein IE62 is a major component of virus particles. J Virol 66: 359–366.
    [Google Scholar]
  130. Kinchington P.R. , Bookey D. , Turse S.E. . ( 1995;). The transcriptional regulatory proteins encoded by varicella-zoster virus open reading frames (ORFs) 4 and 63, but not ORF 61, are associated with purified virus particles. J Virol 69: 4274–4282.
    [Google Scholar]
  131. Knickelbein J.E. , Khanna K.M. , Yee M.B. , Baty C.J. , Kinchington P.R. , Hendricks R.L. . ( 2008;). Noncytotoxic lytic granule-mediated CD8+T cell inhibition of HSV-1 reactivation from neuronal latency. Science 322: 268–271.[CrossRef]
    [Google Scholar]
  132. Kobayashi M. , Kim J.Y. , Camarena V. , Roehm P.C. , Chao M.V. , Wilson A.C. , Mohr I. . ( 2012a;). A primary neuron culture system for the study of herpes simplex virus latency and reactivation. J Vis Exp 62: 3823.
    [Google Scholar]
  133. Kobayashi M. , Wilson A.C. , Chao M.V. , Mohr I. . ( 2012b;). Control of viral latency in neurons by axonal mTOR signaling and the 4E-BP translation repressor. Genes Dev 26: 1527–1532.[CrossRef]
    [Google Scholar]
  134. Kramer M.F. , Jurak I. , Pesola J.M. , Boissel S. , Knipe D.M. , Coen D.M. . ( 2011;). Herpes simplex virus 1 microRNAs expressed abundantly during latent infection are not essential for latency in mouse trigeminal ganglia. Virology 417: 239–247.[CrossRef]
    [Google Scholar]
  135. Kristie T.M. , Roizman B. . ( 1986;). Alpha 4, the major regulatory protein of herpes simplex virus type 1, is stably and specifically associated with promoter-regulatory domains of alpha genes and of selected other viral genes. Proc Natl Acad Sci U S A 83: 3218–3222.[CrossRef]
    [Google Scholar]
  136. Kristie T.M. , Vogel J.L. , Sears A.E. . ( 1999;). Nuclear localization of the C1 factor (host cell factor) in sensory neurons correlates with reactivation of herpes simplex virus from latency. Proc Natl Acad Sci U S A 96: 1229–1233.[CrossRef]
    [Google Scholar]
  137. Ku C.C. , Zerboni L. , Ito H. , Graham B.S. , Wallace M. , Arvin A.M. . ( 2004;). Varicella-zoster virus transfer to skin by T cells and modulation of viral replication by epidermal cell interferon-alpha. J Exp Med 200: 917–925.[CrossRef]
    [Google Scholar]
  138. Kubat N.J. , Tran R.K. , McAnany P. , Bloom D.C. . ( 2004a;). Specific histone tail modification and not DNA methylation is a determinant of herpes simplex virus type 1 latent gene expression. J Virol 78: 1139–1149.[CrossRef]
    [Google Scholar]
  139. Kubat N.J. , Amelio A.L. , Giordani N.V. , Bloom D.C. . ( 2004b;). The herpes simplex virus type 1 latency-associated transcript (LAT) enhancer/rcr is hyperacetylated during latency independently of LAT transcription. J Virol 78: 12508–12518.[CrossRef]
    [Google Scholar]
  140. Kuddus R. , Gu B. , DeLuca N.A. . ( 1995;). Relationship between TATA-binding protein and herpes simplex virus type 1 ICP4 DNA-binding sites in complex formation and repression of transcription. J Virol 69: 5568–5575.
    [Google Scholar]
  141. Kwiatkowski D.L. , Thompson H.W. , Bloom D.C. . ( 2009;). The polycomb group protein Bmi1 binds to the herpes simplex virus 1 latent genome and maintains repressive histone marks during latency. J Virol 83: 8173–8181.[CrossRef]
    [Google Scholar]
  142. Kyratsous C.A. , Silverstein S.J. . ( 2009;). Components of nuclear domain 10 bodies regulate varicella-zoster virus replication. J Virol 83: 4262–4274.[CrossRef]
    [Google Scholar]
  143. Lacasse J.J. , Schang L.M. . ( 2010;). During lytic infections, herpes simplex virus type 1 DNA is in complexes with the properties of unstable nucleosomes. J Virol 84: 1920–1933.[CrossRef]
    [Google Scholar]
  144. Laibson P.R. , Kibrick S. . ( 1966;). Reactivation of herpetic keratitis by epinephrine in rabbit. Arch Ophthalmol 75: 254–260.[CrossRef]
    [Google Scholar]
  145. Lanfranca M.P. , Mostafa H.H. , Davido D.J. . ( 2014;). HSV-1 ICP0: an E3 ubiquitin ligase that counteracts host intrinsic and innate immunity. Cells 3: 438–454.[CrossRef]
    [Google Scholar]
  146. Leib D.A. , Bogard C.L. , Kosz-Vnenchak M. , Hicks K.A. , Coen D.M. , Knipe D.M. , Schaffer P.A. . ( 1989;). A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. J Virol 63: 2893–2900.
    [Google Scholar]
  147. Leigh J.F. , Acharya N. , Cevallos V. , Margolis T.P. . ( 2008;). Does asymptomatic shedding of herpes simplex virus on the ocular surface lead to false-positive diagnostic PCR results?. Br J Ophthalmol 92: 435–436.[CrossRef]
    [Google Scholar]
  148. Lester J.T. , DeLuca N.A. . ( 2011;). Herpes simplex virus 1 ICP4 forms complexes with TFIID and mediator in virus-infected cells. J Virol 85: 5733–5744.[CrossRef]
    [Google Scholar]
  149. Lewis M.E. , Warren K.G. , Jeffrey V.M. , Shnitka T.K. . ( 1982;). Factors affecting recovery of latent herpes simplex virus from human trigeminal ganglia. Can J Microbiol 28: 123–129.[CrossRef]
    [Google Scholar]
  150. Liang S. , Lu Y. , Jelinek J. , Estecio M. , Li H. , Issa J.P. . ( 2009;). Analysis of epigenetic modifications by next generation sequencing. Conf Proc IEEE Eng Med Biol Soc 2009: 6730.
    [Google Scholar]
  151. Liesegang T.J. , Melton L.J. III , Daly P.J. , Ilstrup D.M. . ( 1989;). Epidemiology of ocular herpes simplex. Incidence in Rochester, Minn, 1950 through 1982. Arch Ophthalmol 107: 1155–1159.[CrossRef]
    [Google Scholar]
  152. Liljeqvist J.A. , Tunbäck P. , Norberg P. . ( 2009;). Asymptomatically shed recombinant herpes simplex virus type 1 strains detected in saliva. J Gen Virol 90: 559–566.[CrossRef]
    [Google Scholar]
  153. Lin F.S. , Ding Q. , Guo H. , Zheng A.C. . ( 2010;). The herpes simplex virus type 1 infected cell protein 22. Virol Sin 25: 1–7.[CrossRef]
    [Google Scholar]
  154. Liu Y. , Gong W. , Huang C.C. , Herr W. , Cheng X. . ( 1999;). Crystal structure of the conserved core of the herpes simplex virus transcriptional regulatory protein VP16. Genes Dev 13: 1692–1703.[CrossRef]
    [Google Scholar]
  155. Lium E.K. , Panagiotidis C.A. , Wen X. , Silverstein S. . ( 1996;). Repression of the alpha0 gene by ICP4 during a productive herpes simplex virus infection. J Virol 70: 3488–3496.
    [Google Scholar]
  156. Low M. , Hay J. , Keir H.M. . ( 1969;). DNA of herpes simplex virus is not a substrate for methylation in vivo . J Mol Biol 46: 205–207.[CrossRef]
    [Google Scholar]
  157. Luciano R.L. , Wilson A.C. . ( 2002;). An activation domain in the C-terminal subunit of HCF-1 is important for transactivation by VP16 and LZIP. Proc Natl Acad Sci U S A 99: 13403–13408.[CrossRef]
    [Google Scholar]
  158. Lukashchuk V. , Everett R.D. . ( 2010;). Regulation of ICP0-null mutant herpes simplex virus type 1 infection by ND10 components ATRX and hDaxx. J Virol 84: 4026–4040.[CrossRef]
    [Google Scholar]
  159. Lungu O. , Panagiotidis C.A. , Annunziato P.W. , Gershon A.A. , Silverstein S.J. . ( 1998;). Aberrant intracellular localization of varicella-zoster virus regulatory proteins during latency. Proc Natl Acad Sci U S A 95: 7080–7085.[CrossRef]
    [Google Scholar]
  160. Mahalingam R. , Wellish M.C. , Dueland A.N. , Cohrs R.J. , Gilden D.H. . ( 1992;). Localization of herpes simplex virus and varicella zoster virus DNA in human ganglia. Ann Neurol 31: 444–448.[CrossRef]
    [Google Scholar]
  161. Mahalingam R. , Wellish M. , Cohrs R. , Debrus S. , Piette J. , Rentier B. , Gilden D.H. . ( 1996;). Expression of protein encoded by varicella-zoster virus open reading frame 63 in latently infected human ganglionic neurons. Proc Natl Acad Sci U S A 93: 2122–2124.[CrossRef]
    [Google Scholar]
  162. Mahalingam R. , Wellish M. , Soike K. , White T. , Kleinschmidt-DeMasters B.K. , Gilden D.H. . ( 2001;). Simian varicella virus infects ganglia before rash in experimentally infected monkeys. Virology 279: 339–342.[CrossRef]
    [Google Scholar]
  163. Margolis T.P. , Elfman F.L. , Leib D. , Pakpour N. , Apakupakul K. , Imai Y. , Voytek C. . ( 2007;). Spontaneous reactivation of herpes simplex virus type 1 in latently infected murine sensory ganglia. J Virol 81: 11069–11074.[CrossRef]
    [Google Scholar]
  164. Markus A. , Grigoryan S. , Sloutskin A. , Yee M.B. , Zhu H. , Yang I.H. , Thakor N.V. , Sarid R. , Kinchington P.R. , Goldstein R.S. . ( 2011;). Varicella-zoster virus (VZV) infection of neurons derived from human embryonic stem cells: direct demonstration of axonal infection, transport of VZV, and productive neuronal infection. J Virol 85: 6220–6233.[CrossRef]
    [Google Scholar]
  165. Markus A. , Waldman Ben-Asher H. , Kinchington P.R. , Goldstein R.S. . ( 2014;). Cellular transcriptome analysis reveals differential expression of pro- and antiapoptosis genes by varicella-zoster virus-infected neurons and fibroblasts. J Virol 88: 7674–7677.[CrossRef]
    [Google Scholar]
  166. Martin R.G. , Dawson C.R. , Jones P. , Togni B. , Lyons C. , Oh J.O. . ( 1977;). Herpesvirus in sensory and autonomic ganglia after eye infection. Arch Ophthalmol 95: 2053–2056.[CrossRef]
    [Google Scholar]
  167. Maul G.G. , Guldner H.H. , Spivack J.G. . ( 1993;). Modification of discrete nuclear domains induced by herpes simplex virus type 1 immediate early gene 1 product (ICP0). J Gen Virol 74: 2679–2690.[CrossRef]
    [Google Scholar]
  168. Maul G.G. , Ishov A.M. , Everett R.D. . ( 1996;). Nuclear domain 10 as preexisting potential replication start sites of herpes simplex virus type-1. Virology 217: 67–75.[CrossRef]
    [Google Scholar]
  169. McFarlane M. , Daksis J.I. , Preston C.M. . ( 1992;). Hexamethylene bisacetamide stimulates herpes simplex virus immediate early gene expression in the absence of trans-induction by Vmw65. J Gen Virol 73: 285–292.[CrossRef]
    [Google Scholar]
  170. McGeoch D.J. , Dolan A. , Donald S. , Brauer D.H. . ( 1986;). Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Res 14: 1727–1745.[CrossRef]
    [Google Scholar]
  171. McGeoch D.J. , Dalrymple M.A. , Davison A.J. , Dolan A. , Frame M.C. , McNab D. , Perry L.J. , Scott J.E. , Taylor P. . ( 1988;). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69: 1531–1574.[CrossRef]
    [Google Scholar]
  172. McKnight J.L. , Pellett P.E. , Jenkins F.J. , Roizman B. . ( 1987;). Characterization and nucleotide sequence of two herpes simplex virus 1 genes whose products modulate alpha-trans-inducing factor-dependent activation of alpha genes. J Virol 61: 992–1001.
    [Google Scholar]
  173. Mehta S.K. , Cohrs R.J. , Forghani B. , Zerbe G. , Gilden D.H. , Pierson D.L. . ( 2004;). Stress-induced subclinical reactivation of varicella zoster virus in astronauts. J Med Virol 72: 174–179.[CrossRef]
    [Google Scholar]
  174. Miller C.S. , Danaher R.J. . ( 2008;). Asymptomatic shedding of herpes simplex virus (HSV) in the oral cavity. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105: 43–50.[CrossRef]
    [Google Scholar]
  175. Mitchell B.M. , Bloom D.C. , Cohrs R.J. , Gilden D.H. , Kennedy P.G. . ( 2003;). Herpes simplex virus-1 and varicella-zoster virus latency in ganglia. J Neurovirol 9: 194–204.[CrossRef]
    [Google Scholar]
  176. Montalvo E.A. , Parmley R.T. , Grose C. . ( 1985;). Structural analysis of the varicella-zoster virus gp98–gp62 complex: posttranslational addition of N-linked and O-linked oligosaccharide moieties. J Virol 53: 761–770.
    [Google Scholar]
  177. Morita Y. , Osaki Y. , Doi Y. , Forghani B. , Gilden D.H. . ( 2003;). Chronic active VZV infection manifesting as zoster sine herpete, zoster paresis and myelopathy. J Neurol Sci 212: 7–9.[CrossRef]
    [Google Scholar]
  178. Mueller N.H. , Graf L.L. , Orlicky D. , Gilden D. , Cohrs R.J. . ( 2009;). Phosphorylation of the nuclear form of varicella-zoster virus immediate-early protein 63 by casein kinase II at serine 186. J Virol 83: 12094–12100.[CrossRef]
    [Google Scholar]
  179. Mueller N.H. , Walters M.S. , Marcus R.A. , Graf L.L. , Prenni J. , Gilden D. , Silverstein S.J. , Cohrs R.J. . ( 2010;). Identification of phosphorylated residues on varicella-zoster virus immediate-early protein ORF63. J Gen Virol 91: 1133–1137.[CrossRef]
    [Google Scholar]
  180. Myers M.G. , Connelly B.L. . ( 1992;). Animal models of varicella. J Infect Dis 166: (Suppl. 1), S48–S50.[CrossRef]
    [Google Scholar]
  181. Nagel M.A. , Gilden D. , Shade T. , Gao B. , Cohrs R.J. . ( 2009;). Rapid and sensitive detection of 68 unique varicella zoster virus gene transcripts in five multiplex reverse transcription-polymerase chain reactions. J Virol Methods 157: 62–68.[CrossRef]
    [Google Scholar]
  182. Nagel M.A. , Choe A. , Traktinskiy I. , Cordery-Cotter R. , Gilden D. , Cohrs R.J. . ( 2011;). Varicella-zoster virus transcriptome in latently infected human ganglia. J Virol 85: 2276–2287.[CrossRef]
    [Google Scholar]
  183. Nesburn A.B. , Green M.T. , Radnoti M. , Walker B. . ( 1977;). Reliable in vivo model for latent herpes simplex virus reactivation with peripheral virus shedding. Infect Immun 15: 772–775.
    [Google Scholar]
  184. Neumann D.M. , Bhattacharjee P.S. , Giordani N.V. , Bloom D.C. , Hill J.M. . ( 2007;). In vivo changes in the patterns of chromatin structure associated with the latent herpes simplex virus type 1 genome in mouse trigeminal ganglia can be detected at early times after butyrate treatment. J Virol 81: 13248–13253.[CrossRef]
    [Google Scholar]
  185. Newhart A. , Rafalska-Metcalf I.U. , Yang T. , Negorev D.G. , Janicki S.M. . ( 2012;). Single-cell analysis of Daxx and ATRX-dependent transcriptional repression. J Cell Sci 125: 5489–5501.[CrossRef]
    [Google Scholar]
  186. Ng A.K. , Block T.M. , Aiamkitsumrit B. , Wang M. , Clementi E. , Wu T.T. , Taylor J.M. , Su Y.H. . ( 2004;). Construction of a herpes simplex virus type 1 mutant with only a three-nucleotide change in the branchpoint region of the latency-associated transcript (LAT) and the stability of its two-kilobase LAT intron. J Virol 78: 12097–12106.[CrossRef]
    [Google Scholar]
  187. Nicoll M.P. , Efstathiou S. . ( 2013;). Expression of the herpes simplex virus type 1 latency-associated transcripts does not influence latency establishment of virus mutants deficient for neuronal replication. J Gen Virol 94: 2489–2494.[CrossRef]
    [Google Scholar]
  188. Nogueira M.L. , Wang V.E. , Tantin D. , Sharp P.A. , Kristie T.M. . ( 2004;). Herpes simplex virus infections are arrested in Oct-1-deficient cells. Proc Natl Acad Sci U S A 101: 1473–1478.[CrossRef]
    [Google Scholar]
  189. Orzalli M.H. , DeLuca N.A. , Knipe D.M. . ( 2012;). Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc Natl Acad Sci U S A 109: E3008–E3017.[CrossRef]
    [Google Scholar]
  190. Ottosen S. , Herrera F.J. , Doroghazi J.R. , Hull A. , Mittal S. , Lane W.S. , Triezenberg S.J. . ( 2006;). Phosphorylation of the VP16 transcriptional activator protein during herpes simplex virus infection and mutational analysis of putative phosphorylation sites. Virology 345: 468–481.[CrossRef]
    [Google Scholar]
  191. Ouwendijk W.J. , Flowerdew S.E. , Wick D. , Horn A.K. , Sinicina I. , Strupp M. , Osterhaus A.D. , Verjans G.M. , Hüfner K. . ( 2012a;). Immunohistochemical detection of intra-neuronal VZV proteins in snap-frozen human ganglia is confounded by antibodies directed against blood group A1-associated antigens. J Neurovirol 18: 172–180.[CrossRef]
    [Google Scholar]
  192. Ouwendijk W.J. , Choe A. , Nagel M.A. , Gilden D. , Osterhaus A.D. , Cohrs R.J. , Verjans G.M. . ( 2012b;). Restricted varicella-zoster virus transcription in human trigeminal ganglia obtained soon after death. J Virol 86: 10203–10206.[CrossRef]
    [Google Scholar]
  193. Ouwendijk W.J. , Mahalingam R. , Traina-Dorge V. , van Amerongen G. , Wellish M. , Osterhaus A.D. , Gilden D. , Verjans G.M. . ( 2012c;). Simian varicella virus infection of Chinese rhesus macaques produces ganglionic infection in the absence of rash. J Neurovirol 18: 91–99.[CrossRef]
    [Google Scholar]
  194. Ouwendijk W.J. , Mahalingam R. , de Swart R.L. , Haagmans B.L. , van Amerongen G. , Getu S. , Gilden D. , Osterhaus A.D. , Verjans G.M. . ( 2013;). T-cell tropism of simian varicella virus during primary infection. PLoS Pathog 9: e1003368.[CrossRef]
    [Google Scholar]
  195. Pan D. , Flores O. , Umbach J.L. , Pesola J.M. , Bentley P. , Rosato P.C. , Leib D.A. , Cullen B.R. , Coen D.M. . ( 2014;). A neuron-specific host microRNA targets herpes simplex virus-1 ICP0 expression and promotes latency. Cell Host Microbe 15: 446–456.[CrossRef]
    [Google Scholar]
  196. Penkert R.R. , Kalejta R.F. . ( 2011;). Tegument protein control of latent herpesvirus establishment and animation. Herpesviridae 2: 3.[CrossRef]
    [Google Scholar]
  197. Perng G.C. , Slanina S.M. , Yukht A. , Ghiasi H. , Nesburn A.B. , Wechsler S.L. . ( 2000;). The latency-associated transcript gene enhances establishment of herpes simplex virus type 1 latency in rabbits. J Virol 74: 1885–1891.[CrossRef]
    [Google Scholar]
  198. Perng G.C. , Esmaili D. , Slanina S.M. , Yukht A. , Ghiasi H. , Osorio N. , Mott K.R. , Maguen B. , Jin L. , other authors . ( 2001;). Three herpes simplex virus type 1 latency-associated transcript mutants with distinct and asymmetric effects on virulence in mice compared with rabbits. J Virol 75: 9018–9028.[CrossRef]
    [Google Scholar]
  199. Perry L.J. , McGeoch D.J. . ( 1988;). The DNA sequences of the long repeat region and adjoining parts of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69: 2831–2846.[CrossRef]
    [Google Scholar]
  200. Pesola J.M. , Zhu J. , Knipe D.M. , Coen D.M. . ( 2005;). Herpes simplex virus 1 immediate-early and early gene expression during reactivation from latency under conditions that prevent infectious virus production. J Virol 79: 14516–14525.[CrossRef]
    [Google Scholar]
  201. Pevenstein S.R. , Williams R.K. , McChesney D. , Mont E.K. , Smialek J.E. , Straus S.E. . ( 1999;). Quantitation of latent varicella-zoster virus and herpes simplex virus genomes in human trigeminal ganglia. J Virol 73: 10514–10518.
    [Google Scholar]
  202. Plotkin S.A. , Stein S. , Snyder M. , Immesoete P. . ( 1977;). Attempts to recover varicella virus from ganglia. Ann Neurol 2: 249.[CrossRef]
    [Google Scholar]
  203. Poffenberger K.L. , Raichlen P.E. , Herman R.C. . ( 1993;). In vitro characterization of a herpes simplex virus type 1 ICP22 deletion mutant. Virus Genes 7: 171–186.[CrossRef]
    [Google Scholar]
  204. Preston V.G. , Kennard J. , Rixon F.J. , Logan A.J. , Mansfield R.W. , McDougall I.M. . ( 1997;). Efficient herpes simplex virus type 1 (HSV-1) capsid formation directed by the varicella-zoster virus scaffolding protein requires the carboxy-terminal sequences from the HSV-1 homologue. J Gen Virol 78: 1633–1646.
    [Google Scholar]
  205. Pugazhenthi S. , Nair S. , Velmurugan K. , Liang Q. , Mahalingam R. , Cohrs R.J. , Nagel M.A. , Gilden D. . ( 2011;). Varicella-zoster virus infection of differentiated human neural stem cells. J Virol 85: 6678–6686.[CrossRef]
    [Google Scholar]
  206. Reichelt M. , Brady J. , Arvin A.M. . ( 2009;). The replication cycle of varicella-zoster virus: analysis of the kinetics of viral protein expression, genome synthesis, and virion assembly at the single-cell level. J Virol 83: 3904–3918.[CrossRef]
    [Google Scholar]
  207. Reichelt M. , Wang L. , Sommer M. , Perrino J. , Nour A.M. , Sen N. , Baiker A. , Zerboni L. , Arvin A.M. . ( 2011;). Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLoS Pathog 7: e1001266.[CrossRef]
    [Google Scholar]
  208. Rice S.A. , Long M.C. , Lam V. , Schaffer P.A. , Spencer C.A. . ( 1995;). Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription program. J Virol 69: 5550–5559.
    [Google Scholar]
  209. Roizman B. . ( 1979;). The structure and isomerization of herpes simplex virus genomes. Cell 16: 481–494.[CrossRef]
    [Google Scholar]
  210. Roizman B. , Knipe D.M. , Whitley R.J. . ( 2013;). Herpes simplex viruses. . In Fields Virology, 6th edn, pp. 1823–1897. Edited by Knipe D. M. , Howley P. M. . Philadelphia, PA: Lippincott Williams & Wilkins;.
    [Google Scholar]
  211. Ross J. , Williams M. , Cohen J.I. . ( 1997;). Disruption of the varicella-zoster virus dUTPase and the adjacent ORF9A gene results in impaired growth and reduced syncytia formation in vitro . Virology 234: 186–195.[CrossRef]
    [Google Scholar]
  212. Rubio E.D. , Reiss D.J. , Welcsh P.L. , Disteche C.M. , Filippova G.N. , Baliga N.S. , Aebersold R. , Ranish J.A. , Krumm A. . ( 2008;). CTCF physically links cohesin to chromatin. Proc Natl Acad Sci U S A 105: 8309–8314.[CrossRef]
    [Google Scholar]
  213. Sadzot-Delvaux C. , Arvin A.M. , Rentier B. . ( 1998;). Varicella-zoster virus IE63, a virion component expressed during latency and acute infection, elicits humoral and cellular immunity. J Infect Dis 178: (Suppl. 1), S43–S47.[CrossRef]
    [Google Scholar]
  214. Saitoh H. , Momma Y. , Inoue H. , Yajima D. , Iwase H. . ( 2013;). Viable herpes simplex virus type 1 and varicella-zoster virus in the trigeminal ganglia of human cadavers. J Med Virol 85: 833–838.[CrossRef]
    [Google Scholar]
  215. Sandri-Goldin R.M. . ( 1998;). ICP27 mediates HSV RNA export by shuttling through a leucine-rich nuclear export signal and binding viral intronless RNAs through an RGG motif. Genes Dev 12: 868–879.[CrossRef]
    [Google Scholar]
  216. Sawtell N.M. . ( 1997;). Comprehensive quantification of herpes simplex virus latency at the single-cell level. J Virol 71: 5423–5431.
    [Google Scholar]
  217. Sawtell N.M. . ( 1998;). The probability of in vivo reactivation of herpes simplex virus type 1 increases with the number of latently infected neurons in the ganglia. J Virol 72: 6888–6892.
    [Google Scholar]
  218. Sawtell N.M. , Thompson R.L. . ( 1992;). Rapid in vivo reactivation of herpes simplex virus in latently infected murine ganglionic neurons after transient hyperthermia. J Virol 66: 2150–2156.
    [Google Scholar]
  219. Sawtell N.M. , Thompson R.L. . ( 2004;). Comparison of herpes simplex virus reactivation in ganglia in vivo and in explants demonstrates quantitative and qualitative differences. J Virol 78: 7784–7794.[CrossRef]
    [Google Scholar]
  220. Sawtell N.M. , Poon D.K. , Tansky C.S. , Thompson R.L. . ( 1998;). The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation. J Virol 72: 5343–5350.
    [Google Scholar]
  221. Sawtell N.M. , Triezenberg S.J. , Thompson R.L. . ( 2011;). VP16 serine 375 is a critical determinant of herpes simplex virus exit from latency in vivo . J Neurovirol 17: 546–551.[CrossRef]
    [Google Scholar]
  222. Schiffer J.T. , bu-Raddad L. , Mark K.E. , Zhu J. , Selke S. , Magaret A. , Wald A. , Corey L. . ( 2009;). Frequent release of low amounts of herpes simplex virus from neurons: results of a mathematical model. Sci Transl Med 1: 7ra16.[CrossRef]
    [Google Scholar]
  223. Schiffer J.T. , Mayer B.T. , Fong Y. , Swan D.A. , Wald A. . ( 2014;). Herpes simplex virus-2 transmission probability estimates based on quantity of viral shedding. J R Soc Interface 11: 20140160.[CrossRef]
    [Google Scholar]
  224. Schmidt-Chanasit J. , Bleymehl K. , Rabenau H.F. , Ulrich R.G. , Cinatl J. Jr , Doerr H.W. . ( 2008;). In vitro replication of varicella-zoster virus in human retinal pigment epithelial cells. J Clin Microbiol 46: 2122–2124.[CrossRef]
    [Google Scholar]
  225. Scriba M. . ( 1975;). Herpes simplex virus infection in guinea pigs: an animal model for studying latent and recurrent herpes simplex virus infection. Infect Immun 12: 162–165.
    [Google Scholar]
  226. Severini A. , Morgan A.R. , Tovell D.R. , Tyrrell D.L. . ( 1994;). Study of the structure of replicative intermediates of HSV-1 DNA by pulsed-field gel electrophoresis. Virology 200: 428–435.[CrossRef]
    [Google Scholar]
  227. Sharma S. , Biswal N. . ( 1977;). Studies on the in vivo methylation of replicating herpes simplex virus type 1 DNA. Virology 82: 265–274.[CrossRef]
    [Google Scholar]
  228. Shen W. , Sa e Silva M. , Jaber T. , Vitvitskaia O. , Li S. , Henderson G. , Jones C. . ( 2009;). Two small RNAs encoded within the first 1.5 kilobases of the herpes simplex virus type 1 latency-associated transcript can inhibit productive infection and cooperate to inhibit apoptosis. J Virol 83: 9131–9139.[CrossRef]
    [Google Scholar]
  229. Shimomura Y. , Gangarosa L.P. Sr , Kataoka M. , Hill J.M. . ( 1983;). HSV-1 shedding by lontophoresis of 6-hydroxydopamine followed by topical epinephrine. Invest Ophthalmol Vis Sci 24: 1588–1594.
    [Google Scholar]
  230. Simmons A. , Nash A.A. . ( 1985;). Role of antibody in primary and recurrent herpes simplex virus infection. J Virol 53: 944–948.
    [Google Scholar]
  231. Skaliter R. , Makhov A.M. , Griffith J.D. , Lehman I.R. . ( 1996;). Rolling circle DNA replication by extracts of herpes simplex virus type 1-infected human cells. J Virol 70: 1132–1136.
    [Google Scholar]
  232. Sloutskin A. , Kinchington P.R. , Goldstein R.S. . ( 2013;). Productive vs non-productive infection by cell-free varicella zoster virus of human neurons derived from embryonic stem cells is dependent upon infectious viral dose. Virology 443: 285–293.[CrossRef]
    [Google Scholar]
  233. Sloutskin A. , Yee M.B. , Kinchington P.R. , Goldstein R.S. . ( 2014;). Varicella-zoster virus and herpes simplex virus 1 can infect and replicate in the same neurons whether co- or superinfected. J Virol 88: 5079–5086.[CrossRef]
    [Google Scholar]
  234. Smith R.H. , Caughman G.B. , O'Callaghan D.J. . ( 1992;). Characterization of the regulatory functions of the equine herpesvirus 1 immediate-early gene product. J Virol 66: 936–945.
    [Google Scholar]
  235. Spivack J.G. , Woods G.M. , Fraser N.W. . ( 1991;). Identification of a novel latency-specific splice donor signal within the herpes simplex virus type 1 2.0-kilobase latency-associated transcript (LAT): translation inhibition of LAT open reading frames by the intron within the 2.0-kilobase LAT. J Virol 65: 6800–6810.
    [Google Scholar]
  236. St Leger A.J. , Hendricks R.L. . ( 2011;). CD8+T cells patrol HSV-1-infected trigeminal ganglia and prevent viral reactivation. J Neurovirol 17: 528–534.[CrossRef]
    [Google Scholar]
  237. Steiner I. , Kennedy P.G. . ( 1993;). Molecular biology of herpes simplex virus type 1 latency in the nervous system. Mol Neurobiol 7: 137–159.[CrossRef]
    [Google Scholar]
  238. Steiner I. , Spivack J.G. , Deshmane S.L. , Ace C.I. , Preston C.M. , Fraser N.W. . ( 1990;). A herpes simplex virus type 1 mutant containing a nontransinducing Vmw65 protein establishes latent infection in vivo in the absence of viral replication and reactivates efficiently from explanted trigeminal ganglia. J Virol 64: 1630–1638.
    [Google Scholar]
  239. Stevens J.G. , Cook M.L. . ( 1971;). Latent herpes simplex virus in spinal ganglia of mice. Science 173: 843–845.[CrossRef]
    [Google Scholar]
  240. Stevens J.G. , Nesburn A.B. , Cook M.L. . ( 1972;). Latent herpes simplex virus from trigeminal ganglia of rabbits with recurrent eye infection. Nat New Biol 235: 216–217.[CrossRef]
    [Google Scholar]
  241. Stevens J.G. , Haarr L. , Porter D.D. , Cook M.L. , Wagner E.K. . ( 1988;). Prominence of the herpes simplex virus latency-associated transcript in trigeminal ganglia from seropositive humans. J Infect Dis 158: 117–123.[CrossRef]
    [Google Scholar]
  242. Stingley S.W. , Ramirez J.J. , Aguilar S.A. , Simmen K. , Sandri-Goldin R.M. , Ghazal P. , Wagner E.K. . ( 2000;). Global analysis of herpes simplex virus type 1 transcription using an oligonucleotide-based DNA microarray. J Virol 74: 9916–9927.[CrossRef]
    [Google Scholar]
  243. Stothard P. . ( 2000;). The Sequence Manipulation Suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28: 1102–1104.
    [Google Scholar]
  244. Suspène R. , Aynaud M.M. , Koch S. , Pasdeloup D. , Labetoulle M. , Gaertner B. , Vartanian J.P. , Meyerhans A. , Wain-Hobson S. . ( 2011;). Genetic editing of herpes simplex virus 1 and Epstein–Barr herpesvirus genomes by human APOBEC3 cytidine deaminases in culture and in vivo . J Virol 85: 7594–7602.[CrossRef]
    [Google Scholar]
  245. Takahashi M.N. , Jackson W. , Laird D.T. , Culp T.D. , Grose C. , Haynes J.I. II , Benetti L. . ( 2009;). Varicella-zoster virus infection induces autophagy in both cultured cells and human skin vesicles. J Virol 83: 5466–5476.[CrossRef]
    [Google Scholar]
  246. Tal-Singer R. , Lasner T.M. , Podrzucki W. , Skokotas A. , Leary J.J. , Berger S.L. , Fraser N.W. . ( 1997;). Gene expression during reactivation of herpes simplex virus type 1 from latency in the peripheral nervous system is different from that during lytic infection of tissue cultures. J Virol 71: 5268–5276.
    [Google Scholar]
  247. Taslim C. , Huang K. , Huang T. , Lin S. . ( 2012;). Analyzing ChIP-seq data: preprocessing, normalization, differential identification, and binding pattern characterization. Methods Mol Biol 802: 275–291.[CrossRef]
    [Google Scholar]
  248. Tavalai N. , Stamminger T. . ( 2009;). Interplay between herpesvirus infection and host defense by PML nuclear bodies. Viruses 1: 1240–1264.[CrossRef]
    [Google Scholar]
  249. Taylor K.E. , Chew M.V. , Ashkar A.A. , Mossman K.L. . ( 2014;). Novel roles of cytoplasmic ICP0: proteasome-independent functions of the RING finger are required to block interferon-stimulated gene production but not to promote viral replication. J Virol 88: 8091–8101.[CrossRef]
    [Google Scholar]
  250. Theil D. , Derfuss T. , Paripovic I. , Herberger S. , Meinl E. , Schueler O. , Strupp M. , Arbusow V. , Brandt T. . ( 2003a;). Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response. Am J Pathol 163: 2179–2184.[CrossRef]
    [Google Scholar]
  251. Theil D. , Paripovic I. , Derfuss T. , Herberger S. , Strupp M. , Arbusow V. , Brandt T. . ( 2003b;). Dually infected (HSV-1/VZV) single neurons in human trigeminal ganglia. Ann Neurol 54: 678–682.[CrossRef]
    [Google Scholar]
  252. Thomas D.L. , Lock M. , Zabolotny J.M. , Mohan B.R. , Fraser N.W. . ( 2002;). The 2-kilobase intron of the herpes simplex virus type 1 latency-associated transcript has a half-life of approximately 24 hours in SY5Y and COS-1 cells. J Virol 76: 532–540.[CrossRef]
    [Google Scholar]
  253. Thompson R.L. , Sawtell N.M. . ( 2000;). Replication of herpes simplex virus type 1 within trigeminal ganglia is required for high frequency but not high viral genome copy number latency. J Virol 74: 965–974.[CrossRef]
    [Google Scholar]
  254. Thompson R.L. , Sawtell N.M. . ( 2006;). Evidence that the herpes simplex virus type 1 ICP0 protein does not initiate reactivation from latency in vivo . J Virol 80: 10919–10930.[CrossRef]
    [Google Scholar]
  255. Thompson R.L. , Preston C.M. , Sawtell N.M. . ( 2009;). De novo synthesis of VP16 coordinates the exit from HSV latency in vivo . PLoS Pathog 5: e1000352.[CrossRef]
    [Google Scholar]
  256. Topp K.S. , Meade L.B. , LaVail J.H. . ( 1994;). Microtubule polarity in the peripheral processes of trigeminal ganglion cells: relevance for the retrograde transport of herpes simplex virus. J Neurosci 14: 318–325.
    [Google Scholar]
  257. Tronstein E. , Johnston C. , Huang M.L. , Selke S. , Magaret A. , Warren T. , Corey L. , Wald A. . ( 2011;). Genital shedding of herpes simplex virus among symptomatic and asymptomatic persons with HSV-2 infection. JAMA 305: 1441–1449.[CrossRef]
    [Google Scholar]
  258. Umbach J.L. , Kramer M.F. , Jurak I. , Karnowski H.W. , Coen D.M. , Cullen B.R. . ( 2008;). MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454: 780–783.
    [Google Scholar]
  259. Umbach J.L. , Nagel M.A. , Cohrs R.J. , Gilden D.H. , Cullen B.R. . ( 2009;). Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol 83: 10677–10683.[CrossRef]
    [Google Scholar]
  260. van Santen V.L. . ( 1991;). Characterization of the bovine herpesvirus 4 major immediate-early transcript. J Virol 65: 5211–5224.
    [Google Scholar]
  261. van Velzen M. , Jing L. , Osterhaus A.D. , Sette A. , Koelle D.M. , Verjans G.M. . ( 2013;). Local CD4 and CD8 T-cell reactivity to HSV-1 antigens documents broad viral protein expression and immune competence in latently infected human trigeminal ganglia. PLoS Pathog 9: e1003547.[CrossRef]
    [Google Scholar]
  262. Verjans G.M. , Hintzen R.Q. , van Dun J.M. , Poot A. , Milikan J.C. , Laman J.D. , Langerak A.W. , Kinchington P.R. , Osterhaus A.D. . ( 2007;). Selective retention of herpes simplex virus-specific T cells in latently infected human trigeminal ganglia. Proc Natl Acad Sci U S A 104: 3496–3501.[CrossRef]
    [Google Scholar]
  263. Verweij M.C. , Lipińska A.D. , Koppers-Lalic D. , Quinten E. , Funke J. , van Leeuwen H.C. , Bieńkowska-Szewczyk K. , Koch J. , Ressing M.E. , Wiertz E.J.H.J. . ( 2011;). Structural and functional analysis of the TAP-inhibiting UL49.5 proteins of varicelloviruses. Mol Immunol 48: 2038–51.[CrossRef]
    [Google Scholar]
  264. Vrabec J.T. , Alford R.L. . ( 2004;). Quantitative analysis of herpes simplex virus in cranial nerve ganglia. J Neurovirol 10: 216–222.[CrossRef]
    [Google Scholar]
  265. Wada Y. , Ohta Y. , Xu M. , Tsutsumi S. , Minami T. , Inoue K. , Komura D. , Kitakami J. , Oshida N. , other authors . ( 2009;). A wave of nascent transcription on activated human genes. Proc Natl Acad Sci U S A 106: 18357–18361.[CrossRef]
    [Google Scholar]
  266. Wagner L.M. , DeLuca N.A. . ( 2013;). Temporal association of herpes simplex virus ICP4 with cellular complexes functioning at multiple steps in PolII transcription. PLoS One 8: e78242.[CrossRef]
    [Google Scholar]
  267. Wagner E.K. , Petroski M.D. , Pande N.T. , Lieu P.T. , Rice M. . ( 1998;). Analysis of factors influencing kinetics of herpes simplex virus transcription utilizing recombinant virus. Methods 16: 105–116.[CrossRef]
    [Google Scholar]
  268. Walters M.S. , Kinchington P.R. , Banfield B.W. , Silverstein S. . ( 2010;). Hyperphosphorylation of histone deacetylase 2 by alphaherpesvirus US3 kinases. J Virol 84: 9666–9676.[CrossRef]
    [Google Scholar]
  269. Wang Q.Y. , Zhou C. , Johnson K.E. , Colgrove R.C. , Coen D.M. , Knipe D.M. . ( 2005;). Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection. Proc Natl Acad Sci U S A 102: 16055–16059.[CrossRef]
    [Google Scholar]
  270. Wang C.C. , Yepes L.C. , Danaher R.J. , Berger J.R. , Mootoor Y. , Kryscio R.J. , Miller C.S. . ( 2010;). Low prevalence of varicella zoster virus and herpes simplex virus type 2 in saliva from human immunodeficiency virus-infected persons in the era of highly active antiretroviral therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109: 232–237.[CrossRef]
    [Google Scholar]
  271. Webre J.M. , Hill J.M. , Nolan N.M. , Clement C. , McFerrin H.E. , Bhattacharjee P.S. , Hsia V. , Neumann D.M. , Foster T.P. , other authors . ( 2012;). Rabbit and mouse models of HSV-1 latency, reactivation, and recurrent eye diseases. J Biomed Biotechnol 2012: 612316.[CrossRef]
    [Google Scholar]
  272. White T.M. , Gilden D.H. , Mahalingam R. . ( 2001;). An animal model of varicella virus infection. Brain Pathol 11: 475–479.[CrossRef]
    [Google Scholar]
  273. Whitley R.J. , Gnann J.W. . ( 2002;). Viral encephalitis: familiar infections and emerging pathogens. Lancet 359: 507–513.[CrossRef]
    [Google Scholar]
  274. Wilcox C.L. , Johnson E.M. Jr . ( 1987;). Nerve growth factor deprivation results in the reactivation of latent herpes simplex virus in vitro . J Virol 61: 2311–2315.
    [Google Scholar]
  275. Wilcox C.L. , Johnson E.M. Jr . ( 1988;). Characterization of nerve growth factor-dependent herpes simplex virus latency in neurons in vitro . J Virol 62: 393–399.
    [Google Scholar]
  276. Wilcox C.L. , Smith R.L. , Freed C.R. , Johnson E.M. Jr . ( 1990;). Nerve growth factor-dependence of herpes simplex virus latency in peripheral sympathetic and sensory neurons in vitro . J Neurosci 10: 1268–1275.
    [Google Scholar]
  277. Wilson A.C. , Mohr I. . ( 2012;). A cultured affair: HSV latency and reactivation in neurons. Trends Microbiol 20: 604–611.[CrossRef]
    [Google Scholar]
  278. Workman A. , Eudy J. , Smith L. , da Silva L.F. , Sinani D. , Bricker H. , Cook E. , Doster A. , Jones C. . ( 2012;). Cellular transcription factors induced in trigeminal ganglia during dexamethasone-induced reactivation from latency stimulate bovine herpesvirus 1 productive infection and certain viral promoters. J Virol 86: 2459–2473.[CrossRef]
    [Google Scholar]
  279. Wroblewska Z. , Valyi-Nagy T. , Otte J. , Dillner A. , Jackson A. , Sole D.P. , Fraser N.W. . ( 1993;). A mouse model for varicella-zoster virus latency. Microb Pathog 15: 141–151.[CrossRef]
    [Google Scholar]
  280. Wu T.T. , Su Y.H. , Block T.M. , Taylor J.M. . ( 1996;). Evidence that two latency-associated transcripts of herpes simplex virus type 1 are nonlinear. J Virol 70: 5962–5967.
    [Google Scholar]
  281. Wu W. , Guo Z. , Zhang X. , Guo L. , Liu L. , Liao Y. , Wang J. , Wang L. , Li Q. . ( 2013;). A microRNA encoded by HSV-1 inhibits a cellular transcriptional repressor of viral immediate early and early genes. Sci China Life Sci 56: 373–383.[CrossRef]
    [Google Scholar]
  282. Yang L. , Voytek C.C. , Margolis T.P. . ( 2000;). Immunohistochemical analysis of primary sensory neurons latently infected with herpes simplex virus type 1. J Virol 74: 209–217.[CrossRef]
    [Google Scholar]
  283. Yao F. , Courtney R.J. . ( 1992;). Association of ICP0 but not ICP27 with purified virions of herpes simplex virus type 1. J Virol 66: 2709–2716.
    [Google Scholar]
  284. Yu X. , Seitz S. , Pointon T. , Bowlin J.L. , Cohrs R.J. , Jonjić S. , Haas J. , Wellish M. , Gilden D. . ( 2013;). Varicella zoster virus infection of highly pure terminally differentiated human neurons. J Neurovirol 19: 75–81.[CrossRef]
    [Google Scholar]
  285. Zabierowski S.E. , DeLuca N.A. . ( 2008;). Stabilized binding of TBP to the TATA box of herpes simplex virus type 1 early (tk) and late (gC) promoters by TFIIA and ICP4. J Virol 82: 3546–3554.[CrossRef]
    [Google Scholar]
  286. Zerboni L. , Ku C.C. , Jones C.D. , Zehnder J.L. , Arvin A.M. . ( 2005;). Varicella-zoster virus infection of human dorsal root ganglia in vivo . Proc Natl Acad Sci U S A 102: 6490–6495.[CrossRef]
    [Google Scholar]
  287. Zerboni L. , Sobel R.A. , Ramachandran V. , Rajamani J. , Ruyechan W. , Abendroth A. , Arvin A. . ( 2010;). Expression of varicella-zoster virus immediate-early regulatory protein IE63 in neurons of latently infected human sensory ganglia. J Virol 84: 3421–3430.[CrossRef]
    [Google Scholar]
  288. Zerboni L. , Sobel R.A. , Lai M. , Triglia R. , Steain M. , Abendroth A. , Arvin A. . ( 2012;). Apparent expression of varicella-zoster virus proteins in latency resulting from reactivity of murine and rabbit antibodies with human blood group A determinants in sensory neurons. J Virol 86: 578–583.[CrossRef]
    [Google Scholar]
  289. Zhang Z. , Huang Y. , Zhu H. . ( 2008;). A highly efficient protocol of generating and analyzing VZV ORF deletion mutants based on a newly developed luciferase VZV BAC system. J Virol Methods 148: 197–204.[CrossRef]
    [Google Scholar]
  290. Zhou G. , Du T. , Roizman B. . ( 2013;). The role of the CoREST/REST repressor complex in herpes simplex virus 1 productive infection and in latency. Viruses 5: 1208–1218.[CrossRef]
    [Google Scholar]
  291. Zhu Q. , Courtney R.J. . ( 1994;). Chemical cross-linking of virion envelope and tegument proteins of herpes simplex virus type 1. Virology 204: 590–599.[CrossRef]
    [Google Scholar]
  292. Zwaagstra J.C. , Ghiasi H. , Slanina S.M. , Nesburn A.B. , Wheatley S.C. , Lillycrop K. , Wood J. , Latchman D.S. , Patel K. , Wechsler S.L. . ( 1990;). Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells: evidence for neuron specificity and for a large LAT transcript. J Virol 64: 5019–5028.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000128
Loading
/content/journal/jgv/10.1099/vir.0.000128
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error