A novel dsRNA virus was identified from the arboreal ant . The complete nucleotide sequence analysis of the virus revealed that the virus consisted of 5704 bp with two ORFs. ORF1 (3084 nt) encoded a putative capsid protein. ORF2 (1977 nt) encoded a viral RNA-dependent RNA polymerase (RdRp). ORF2 could be translated as a fusion with the ORF1 product by a − 1 frameshift in the overlapping ORF1. Phylogenetic analyses based on the RdRp revealed that the virus from was most likely a novel totivirus, but it was not closely related to the previously known totiviruses in arthropods. Transmission electron microscopy revealed isometric virus particles of ∼30 nm diameter in the cytoplasm, which was consistent with the characteristics of the family . The virus was detected by reverse transcription-PCR in all caste members and developmental stages of ants, including eggs, larvae, pupae, adult workers, alates (male and female) and queens. To our knowledge, this is the first report of a member of the family in a hymenopteran; the virus was designated virus.


Article metrics loading...

Loading full text...

Full text loading...



  1. Bekaert M., Bidou L., Denise A., Duchateau-Nguyen G., Forest J.P., Froidevaux C., Hatin I., Rousset J.P., Termier M. (2003). Towards a computational model for − 1 eukaryotic frameshifting sitesBioinformatics 19327335.[CrossRef] [Google Scholar]
  2. Darriba D., Taboada G.L., Doallo R., Posada D. (2011). ProtTest 3: fast selection of best-fit models of protein evolutionBioinformatics 2711641165.[CrossRef] [Google Scholar]
  3. Gouy M., Guindon S., Gascuel O. (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree buildingMol Biol Evol 27221224.[CrossRef] [Google Scholar]
  4. Guindon S., Gascuel O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihoodSyst Biol 52696704.[CrossRef] [Google Scholar]
  5. Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0Syst Biol 59307321.[CrossRef] [Google Scholar]
  6. Haugland O., Mikalsen A.B., Nilsen P., Lindmo K., Thu B.J., Eliassen T.M., Roos N., Rode M., Evensen O. (2011). Cardiomyopathy syndrome of atlantic salmon (Salmo salar L.) is caused by a double-stranded RNA virus of the Totiviridae familyJ Virol 8552755286.[CrossRef] [Google Scholar]
  7. Isawa H., Kuwata R., Hoshino K., Tsuda Y., Sakai K., Watanabe S., Nishimura M., Satho T., Kataoka M., other authors. (2011). Identification and molecular characterization of a new nonsegmented double-stranded RNA virus isolated from Culex mosquitoes in JapanVirus Res 155147155.[CrossRef] [Google Scholar]
  8. Jacks T., Power M.D., Masiarz F.R., Luciw P.A., Barr P.J., Varmus H.E. (1988). Characterization of ribosomal frameshifting in HIV-1 gag-pol expressionNature 331280283.[CrossRef] [Google Scholar]
  9. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., other authors. (2007). Clustal W and Clustal X version 2.0Bioinformatics 2329472948.[CrossRef] [Google Scholar]
  10. Liu H., Fu Y., Jiang D., Li G., Xie J., Cheng J., Peng Y., Ghabrial S.A., Yi X. (2010). Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomesJ Virol 841187611887.[CrossRef] [Google Scholar]
  11. Miyazaki S., Iwabuchi K., Pak J., Fukuhara T., Nitta T. (1996). Selective occurrence of endogenous double-stranded RNAs in insectsInsect Biochem Mol Biol 26955961.[CrossRef] [Google Scholar]
  12. Morris T.J., Dodds J.A. (1979). Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissuePhytopathology 69854858.[CrossRef] [Google Scholar]
  13. Nibert M.L. (2007). ‘2A-like’ and ‘shifty heptamer’ motifs in penaeid shrimp infectious myonecrosis virus, a monosegmented double-stranded RNA virusJ Gen Virol 8813151318.[CrossRef] [Google Scholar]
  14. Posada D., Buckley T.R. (2004). Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio testsSyst Biol 53793808.[CrossRef] [Google Scholar]
  15. Roossinck M.J. (2011). The good viruses: viral mutualistic symbiosesNat Rev Microbiol 999108.[CrossRef] [Google Scholar]
  16. Sasaki K., Satoh T., Obara Y. (1995). Sperm utilization by honey bee queens; DNA fingerprinting analysisAppl Entomol Zool (Jpn) 30335341. [Google Scholar]
  17. Satoh T. (1989). Comparisons between two apparently distinct forms of Camponotus nawai ITO (Hymenoptera, Formicidae)Insectes Soc 36277292.[CrossRef] [Google Scholar]
  18. Satoh T., Masuko K., Matsumoto T. (1997). Colony genetic structure in the mono- and polygynous sibling species of the ants Camponotus nawai Camponotus yamaokai: DNA fingerprint analysisEcol Res 127176.[CrossRef] [Google Scholar]
  19. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013). mega6: Molecular Evolutionary Genetics Analysis version 6.0Mol Biol Evol 3027252729.[CrossRef] [Google Scholar]
  20. Terayama M., Satoh T. (1990). A new species of the genus Camponotus from Japan, with notes on two known forms of the subgenus Myrmamblys (Hymenoptera, Formicidae)Jpn J Ent 58405414. [Google Scholar]
  21. Valles S.M., Hashimoto Y. (2009). Isolation and characterization of Solenopsis invicta virus 3, a new positive-strand RNA virus infecting the red imported fire ant, Solenopsis invicta Virology 388354361.[CrossRef] [Google Scholar]
  22. Valles S.M., Porter S.D., Firth A.E. (2014). Solenopsis invicta virus 3: pathogenesis and stage specificity in red imported fire antsVirology 460-4616671.[CrossRef] [Google Scholar]
  23. Wickner R., Wang C., Patterson J. (2012). Family Totiviridae . In Virus Taxonomy Eighth Report of the International Committee on Taxonomy of Viruses, pp. 639650. Edited by Fauquet C., Mayo M., Maniloff J., Desselberger U., Ball L. LondonAcademic Press. [Google Scholar]
  24. Wu Q., Luo Y., Lu R., Lau N., Lai E.C., Li W.X., Ding S.W. (2010). Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAsProc Natl Acad Sci U S A 10716061611.[CrossRef] [Google Scholar]
  25. Zhai Y., Attoui H., MohdJaafar F., Wang H.Q., Cao Y.X., Fan S.P., Sun Y.X., Liu L.D., Mertens P.P., other authors. (2010). Isolation and full-length sequence analysis of Armigeres subalbatus totivirus, the first totivirus isolate from mosquitoes representing a proposed novel genus (Artivirus) of the family Totiviridae J Gen Virol 9128362845.[CrossRef] [Google Scholar]

Data & Media loading...


Supplementary Data

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error