1887

Abstract

The 5′ leader region of the human immunodeficiency virus 1 (HIV-1) RNA genome contains the major 5′ splice site (ss) that is used in the production of the many spliced viral RNAs. This splice–donor (SD) region can fold into a stable stem–loop structure and the thermodynamic stability of this RNA hairpin influences splicing efficiency. In addition, splicing may be modulated by binding of splicing regulatory (SR) proteins, in particular SF2/ASF (SRSF1), SC35 (SRSF2), SRp40 (SRSF5) and SRp55 (SRSF6), to sequence elements in the SD region. The role of RNA structure and SR protein binding in splicing control was previously studied by functional analysis of mutant SD sequences. The interpretation of these studies was complicated by the fact that most mutations simultaneously affect both structure and sequence elements. We therefore tried to disentangle the contribution of these two variables by designing more precise SD region mutants with a single effect on either the sequence or the structure. The current analysis indicates that HIV-1 splicing at the major 5′ss is modulated by both the stability of the local RNA structure and the binding of splicing regulatory proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000122
2015-07-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/7/1906.html?itemId=/content/journal/jgv/10.1099/vir.0.000122&mimeType=html&fmt=ahah

References

  1. Abbink T.E. , Berkhout B. . ( 2008;). RNA structure modulates splicing efficiency at the human immunodeficiency virus type 1 major splice donor. J Virol 82: 3090–3098 [CrossRef] [PubMed].
    [Google Scholar]
  2. Asang C. , Erkelenz S. , Schaal H. . ( 2012;). The HIV-1 major splice donor D1 is activated by splicing enhancer elements within the leader region and the p17-inhibitory sequence. Virology 432: 133–145 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bakkour N. , Lin Y.L. , Maire S. , Ayadi L. , Mahuteau-Betzer F. , Nguyen C.H. , Mettling C. , Portales P. , Grierson D. , other authors . ( 2007;). Small-molecule inhibition of HIV pre-mRNA splicing as a novel antiretroviral therapy to overcome drug resistance. PLoS Pathog 3: 1530–1539 [PubMed].[CrossRef]
    [Google Scholar]
  4. Berkhout B. , Arts K. , Abbink T.E. . ( 2011;). Ribosomal scanning on the 5′-untranslated region of the human immunodeficiency virus RNA genome. Nucleic Acids Res 39: 5232–5244 [CrossRef] [PubMed].
    [Google Scholar]
  5. Buratti E. , Baralle F.E. . ( 2004;). Influence of RNA secondary structure on the pre-mRNA splicing process. Mol Cell Biol 24: 10505–10514 [CrossRef] [PubMed].
    [Google Scholar]
  6. Cartegni L. , Wang J. , Zhu Z. , Zhang M.Q. , Krainer A.R. . ( 2003;). ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res 31: 3568–3571 [CrossRef] [PubMed].
    [Google Scholar]
  7. Damgaard C.K. , Tange T.O. , Kjems J. . ( 2002;). hnRNP A1 controls HIV-1 mRNA splicing through cooperative binding to intron and exon splicing silencers in the context of a conserved secondary structure. RNA 8: 1401–1415 [CrossRef] [PubMed].
    [Google Scholar]
  8. Das A.T. , Zhou X. , Vink M. , Klaver B. , Verhoef K. , Marzio G. , Berkhout B. . ( 2004;). Viral evolution as a tool to improve the tetracycline-regulated gene expression system. J Biol Chem 279: 18776–18782 [CrossRef] [PubMed].
    [Google Scholar]
  9. Das A.T. , Harwig A. , Berkhout B. . ( 2011;). The HIV-1 Tat protein has a versatile role in activating viral transcription. J Virol 85: 9506–9516 [CrossRef] [PubMed].
    [Google Scholar]
  10. Eperon L.P. , Graham I.R. , Griffiths A.D. , Eperon I.C. . ( 1988;). Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase?. Cell 54: 393–401 [CrossRef] [PubMed].
    [Google Scholar]
  11. Erkelenz S. , Mueller W.F. , Evans M.S. , Busch A. , Schöneweis K. , Hertel K.J. , Schaal H. . ( 2013;). Position-dependent splicing activation and repression by SR and hnRNP proteins rely on common mechanisms. RNA 19: 96–102 [CrossRef] [PubMed].
    [Google Scholar]
  12. Freund M. , Asang C. , Kammler S. , Konermann C. , Krummheuer J. , Hipp M. , Meyer I. , Gierling W. , Theiss S. , other authors . ( 2003;). A novel approach to describe a U1 snRNA binding site. Nucleic Acids Res 31: 6963–6975 [CrossRef] [PubMed].
    [Google Scholar]
  13. Goguel V. , Wang Y. , Rosbash M. . ( 1993;). Short artificial hairpins sequester splicing signals and inhibit yeast pre-mRNA splicing. Mol Cell Biol 13: 6841–6848 [PubMed].
    [Google Scholar]
  14. Graveley B.R. . ( 2000;). Sorting out the complexity of SR protein functions. RNA 6: 1197–1211 [CrossRef] [PubMed].
    [Google Scholar]
  15. Groom H.C. , Anderson E.C. , Lever A.M. . ( 2009;). Rev: beyond nuclear export. J Gen Virol 90: 1303–1318 [CrossRef] [PubMed].
    [Google Scholar]
  16. Grover A. , Houlden H. , Baker M. , Adamson J. , Lewis J. , Prihar G. , Pickering-Brown S. , Duff K. , Hutton M. . ( 1999;). 5′ splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop structure that regulates alternative splicing of exon 10. J Biol Chem 274: 15134–15143 [CrossRef] [PubMed].
    [Google Scholar]
  17. Hartmann L. , Theiss S. , Niederacher D. , Schaal H. . ( 2008;). Diagnostics of pathogenic splicing mutations: does bioinformatics cover all bases?. Front Biosci 13: 3252–3272 [CrossRef] [PubMed].
    [Google Scholar]
  18. Horne C. , Young P.J. . ( 2009;). Is RNA manipulation a viable therapy for spinal muscular atrophy?. J Neurol Sci 287: 27–31 [CrossRef] [PubMed].
    [Google Scholar]
  19. Hua Y. , Vickers T.A. , Okunola H.L. , Bennett C.F. , Krainer A.R. . ( 2008;). Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am J Hum Genet 82: 834–848 [CrossRef] [PubMed].
    [Google Scholar]
  20. Hutton M. , Lendon C.L. , Rizzu P. , Baker M. , Froelich S. , Houlden H. , Pickering-Brown S. , Chakraverty S. , Isaacs A. , other authors . ( 1998;). Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393: 702–705 [CrossRef] [PubMed].
    [Google Scholar]
  21. Ibrahim E.C. , Schaal T.D. , Hertel K.J. , Reed R. , Maniatis T. . ( 2005;). Serine/arginine-rich protein-dependent suppression of exon skipping by exonic splicing enhancers. Proc Natl Acad Sci U S A 102: 5002–5007 [CrossRef] [PubMed].
    [Google Scholar]
  22. Jablonski J.A. , Amelio A.L. , Giacca M. , Caputi M. . ( 2010;). The transcriptional transactivator Tat selectively regulates viral splicing. Nucleic Acids Res 38: 1249–1260 [CrossRef] [PubMed].
    [Google Scholar]
  23. Jacquenet S. , Ropers D. , Bilodeau P.S. , Damier L. , Mougin A. , Stoltzfus C.M. , Branlant C. . ( 2001;). Conserved stem-loop structures in the HIV-1 RNA region containing the A3 3′ splice site and its cis-regulatory element: possible involvement in RNA splicing. Nucleic Acids Res 29: 464–478 [CrossRef] [PubMed].
    [Google Scholar]
  24. Kanopka A. , Mühlemann O. , Akusjärvi G. . ( 1996;). Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature 381: 535–538 [CrossRef] [PubMed].
    [Google Scholar]
  25. Karn J. , Stoltzfus C.M. . ( 2012;). Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med 2: a006916 [CrossRef] [PubMed].
    [Google Scholar]
  26. Keriel A. , Mahuteau-Betzer F. , Jacquet C. , Plays M. , Grierson D. , Sitbon M. , Tazi J. . ( 2009;). Protection against retrovirus pathogenesis by SR protein inhibitors. PLoS ONE 4: e4533 [CrossRef] [PubMed].
    [Google Scholar]
  27. Leblanc J. , Weil J. , Beemon K. . ( 2013;). Posttranscriptional regulation of retroviral gene expression: primary RNA transcripts play three roles as pre-mRNA, mRNA, and genomic RNA. Wiley Interdiscip Rev RNA 4: 567–580 [CrossRef] [PubMed].
    [Google Scholar]
  28. Lentz J.J. , Jodelka F.M. , Hinrich A.J. , McCaffrey K.E. , Farris H.E. , Spalitta M.J. , Bazan N.G. , Duelli D.M. , Rigo F. , Hastings M.L. . ( 2013;). Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness. Nat Med 19: 345–350 [CrossRef] [PubMed].
    [Google Scholar]
  29. Lim S.R. , Hertel K.J. . ( 2001;). Modulation of survival motor neuron pre-mRNA splicing by inhibition of alternative 3′ splice site pairing. J Biol Chem 276: 45476–45483 [CrossRef] [PubMed].
    [Google Scholar]
  30. Liu H.X. , Goodall G.J. , Kole R. , Filipowicz W. . ( 1995;). Effects of secondary structure on pre-mRNA splicing: hairpins sequestering the 5′ but not the 3′ splice site inhibit intron processing in Nicotiana plumbaginifolia . EMBO J 14: 377–388 [PubMed].
    [Google Scholar]
  31. Long J.C. , Caceres J.F. . ( 2009;). The SR protein family of splicing factors: master regulators of gene expression. Biochem J 417: 15–27 [CrossRef] [PubMed].
    [Google Scholar]
  32. Mandal D. , Feng Z. , Stoltzfus C.M. . ( 2010;). Excessive RNA splicing and inhibition of HIV-1 replication induced by modified U1 small nuclear RNAs. J Virol 84: 12790–12800 [CrossRef] [PubMed].
    [Google Scholar]
  33. McManus C.J. , Graveley B.R. . ( 2011;). RNA structure and the mechanisms of alternative splicing. Curr Opin Genet Dev 21: 373–379 [CrossRef] [PubMed].
    [Google Scholar]
  34. Mikaelian I. , Sergeant A. . ( 1992;). A general and fast method to generate multiple site directed mutations. Nucleic Acids Res 20: 376 [CrossRef] [PubMed].
    [Google Scholar]
  35. Miyajima H. , Miyaso H. , Okumura M. , Kurisu J. , Imaizumi K. . ( 2002;). Identification of a cis-acting element for the regulation of SMN exon 7 splicing. J Biol Chem 277: 23271–23277 [CrossRef] [PubMed].
    [Google Scholar]
  36. Mueller N. , van Bel N. , Berkhout B. , Das A.T. . ( 2014;). HIV-1 splicing at the major splice donor site is restricted by RNA structure. Virology 468-470: 609–620 [CrossRef] [PubMed].
    [Google Scholar]
  37. Peacey E. , Rodriguez L. , Liu Y. , Wolfe M.S. . ( 2012;). Targeting a pre-mRNA structure with bipartite antisense molecules modulates tau alternative splicing. Nucleic Acids Res 40: 9836–9849 [CrossRef] [PubMed].
    [Google Scholar]
  38. Pollom E. , Dang K.K. , Potter E.L. , Gorelick R.J. , Burch C.L. , Weeks K.M. , Swanstrom R. . ( 2013;). Comparison of SIV and HIV-1 genomic RNA structures reveals impact of sequence evolution on conserved and non-conserved structural motifs. PLoS Pathog 9: e1003294 [CrossRef] [PubMed].
    [Google Scholar]
  39. Ruijter J.M. , Thygesen H.H. , Schoneveld O.J. , Das A.T. , Berkhout B. , Lamers W.H. . ( 2006;). Factor correction as a tool to eliminate between-session variation in replicate experiments: application to molecular biology and retrovirology. Retrovirology 3: 2 [CrossRef] [PubMed].
    [Google Scholar]
  40. Schaub M.C. , Lopez S.R. , Caputi M. . ( 2007;). Members of the heterogeneous nuclear ribonucleoprotein H family activate splicing of an HIV-1 splicing substrate by promoting formation of ATP-dependent spliceosomal complexes. J Biol Chem 282: 13617–13626 [CrossRef] [PubMed].
    [Google Scholar]
  41. Shepard P.J. , Hertel K.J. . ( 2008;). Conserved RNA secondary structures promote alternative splicing. RNA 14: 1463–1469 [CrossRef] [PubMed].
    [Google Scholar]
  42. Singh N.K. , Singh N.N. , Androphy E.J. , Singh R.N. . ( 2006;). Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 26: 1333–1346 [CrossRef] [PubMed].
    [Google Scholar]
  43. Singh N.N. , Singh R.N. , Androphy E.J. . ( 2007;). Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res 35: 371–389 [CrossRef] [PubMed].
    [Google Scholar]
  44. Smith P.J. , Zhang C. , Wang J. , Chew S.L. , Zhang M.Q. , Krainer A.R. . ( 2006;). An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet 15: 2490–2508 [CrossRef] [PubMed].
    [Google Scholar]
  45. Solnick D. . ( 1985;). Alternative splicing caused by RNA secondary structure. Cell 43: 667–676 [CrossRef] [PubMed].
    [Google Scholar]
  46. Soret J. , Bakkour N. , Maire S. , Durand S. , Zekri L. , Gabut M. , Fic W. , Divita G. , Rivalle C. , other authors . ( 2005;). Selective modification of alternative splicing by indole derivatives that target serine-arginine-rich protein splicing factors. Proc Natl Acad Sci U S A 102: 8764–8769 [CrossRef] [PubMed].
    [Google Scholar]
  47. Spillantini M.G. , Murrell J.R. , Goedert M. , Farlow M.R. , Klug A. , Ghetti B. . ( 1998;). Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A 95: 7737–7741 [CrossRef] [PubMed].
    [Google Scholar]
  48. Stoltzfus C.M. . ( 2009;). Chapter 1. Regulation of HIV-1 alternative RNA splicing and its role in virus replication. Adv Virus Res 74: 1–40 [CrossRef] [PubMed].
    [Google Scholar]
  49. Stoltzfus C.M. , Madsen J.M. . ( 2006;). Role of viral splicing elements and cellular RNA binding proteins in regulation of HIV-1 alternative RNA splicing. Curr HIV Res 4: 43–55 [CrossRef] [PubMed].
    [Google Scholar]
  50. Tange T.O. , Damgaard C.K. , Guth S. , Valcárcel J. , Kjems J. . ( 2001;). The hnRNP A1 protein regulates HIV-1 tat splicing via a novel intron silencer element. EMBO J 20: 5748–5758 [CrossRef] [PubMed].
    [Google Scholar]
  51. Wang Z. , Burge C.B. . ( 2008;). Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14: 802–813 [CrossRef] [PubMed].
    [Google Scholar]
  52. Wang E. , Mueller W.F. , Hertel K.J. , Cambi F. . ( 2011;). G Run-mediated recognition of proteolipid protein and DM20 5′ splice sites by U1 small nuclear RNA is regulated by context and proximity to the splice site. J Biol Chem 286: 4059–4071 [CrossRef] [PubMed].
    [Google Scholar]
  53. Warf M.B. , Berglund J.A. . ( 2010;). Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci 35: 169–178 [CrossRef] [PubMed].
    [Google Scholar]
  54. Zahler A.M. , Damgaard C.K. , Kjems J. , Caputi M. . ( 2004;). SC35 and heterogeneous nuclear ribonucleoprotein A/B proteins bind to a juxtaposed exonic splicing enhancer/exonic splicing silencer element to regulate HIV-1 tat exon 2 splicing. J Biol Chem 279: 10077–10084 [CrossRef] [PubMed].
    [Google Scholar]
  55. Zhou Z. , Fu X.D. . ( 2013;). Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 122: 191–207 [CrossRef] [PubMed].
    [Google Scholar]
  56. Zuker M. . ( 2003;). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 3406–3415 [CrossRef] [PubMed].
    [Google Scholar]
  57. Zychlinski D. , Erkelenz S. , Melhorn V. , Baum C. , Schaal H. , Bohne J. . ( 2009;). Limited complementarity between U1 snRNA and a retroviral 5′ splice site permits its attenuation via RNA secondary structure. Nucleic Acids Res 37: 7429–7440 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000122
Loading
/content/journal/jgv/10.1099/vir.0.000122
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error