1887

Abstract

Persistent infection with oncogenic human papillomavirus (HPV) is a prerequisite for cervical disease development, yet data regarding the host immune response to infection at the genotype level are quite limited. We created pseudoviruses bearing the major (L1) and minor (L2) capsid proteins and L1 virus-like particles representing the reference sequence and a consensus of 34 European sequences of HPV51. Despite the formation of similarly sized particles, motifs in the reference L1 and L2 genes had a profound impact on the immunogenicity, antigenicity and infectivity of these antigens. The antibody status of women exhibiting low-grade disease was similar between HPV16 and the consensus HPV51, but both demonstrated discrepancies between binding and neutralizing antibody responses. These data support the use of pseudoviruses as the preferred target antigen in studies of natural HPV infection and the need to consider variation in both the L1 and L2 proteins for the appropriate presentation of antibody epitopes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000121
2015-07-01
2021-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/7/1842.html?itemId=/content/journal/jgv/10.1099/vir.0.000121&mimeType=html&fmt=ahah

References

  1. Bernard H.-U., Burk R.D., Chen Z., van Doorslaer K., zur Hausen H., de Villiers E.-M. (2010). Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendmentsVirology 4017079.[CrossRef] [Google Scholar]
  2. Bouvard V., Baan R., Straif K., Grosse Y., Secretan B., El Ghissassi F., Benbrahim-Tallaa L., Guha N., Freeman C., other authors. (2009). A review of human carcinogens-Part B: biological agentsLancet Oncol 10321322.[CrossRef] [Google Scholar]
  3. Buck C.B., Thompson C.D. (2007). Production of papillomavirus-based gene transfer vectors. In Current Protocols in Molecular BiologyUnit 26.1. Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. Hoboken, NJJohn Wiley & Sons. [Google Scholar]
  4. Buck C.B., Day P.M., Trus B.L. (2013). The papillomavirus major capsid protein L1Virology 445169174.[CrossRef] [Google Scholar]
  5. Burk R.D., Harari A., Chen Z. (2013). Human papillomavirus genome variantsVirology 445232243.[CrossRef] [Google Scholar]
  6. Carter J.J., Koutsky L.A., Hughes J.P., Lee S.K., Kuypers J., Kiviat N., Galloway D.A. (2000). Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infectionJ Infect Dis 18119111919.[CrossRef] [Google Scholar]
  7. Castellsagué X., Naud P., Chow S.N., Wheeler C.M., Germar M.J., Lehtinen M., Paavonen J., Jaisamrarn U., Garland S.M., other authors. (2014). Risk of newly detected infections and cervical abnormalities in women seropositive for naturally acquired human papillomavirus type 16/18 antibodies: analysis of the control arm of PATRICIAJ Infect Dis 210517534.[CrossRef] [Google Scholar]
  8. Chen H.S., Conway M.J., Christensen N.D., Alam S., Meyers C. (2011). Papillomavirus capsid proteins mutually impact structureVirology 412378383.[CrossRef] [Google Scholar]
  9. Culp T.D., Spatz C.M., Reed C.A., Christensen N.D. (2007). Binding and neutralization efficiencies of monoclonal antibodies, Fab fragments, and scFv specific for L1 epitopes on the capsid of infectious HPV particlesVirology 361435446.[CrossRef] [Google Scholar]
  10. de Sanjose S., Quint W.G., Alemany L., Geraets D.T., Klaustermeier J.E., Lloveras B., Tous S., Felix A., Bravo L.E., other authors. (2010). Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide studyLancet Oncol 1110481056.[CrossRef] [Google Scholar]
  11. Dessy F.J., Giannini S.L., Bougelet C.A., Kemp T.J., David M.P., Poncelet S.M., Pinto L.A., Wettendorff M.A. (2008). Correlation between direct ELISA, single epitope-based inhibition ELISA and pseudovirion-based neutralization assay for measuring anti-HPV-16 and anti-HPV-18 antibody response after vaccination with the AS04-adjuvanted HPV-16/18 cervical cancer vaccineHum Vaccin 4425434.[CrossRef] [Google Scholar]
  12. Draper E., Bissett S.L., Howell-Jones R., Edwards D., Munslow G., Soldan K., Beddows S. (2011). Neutralization of non-vaccine human papillomavirus pseudoviruses from the A7 and A9 species groups by bivalent HPV vaccine seraVaccine 2985858590.[CrossRef] [Google Scholar]
  13. Draper E., Bissett S.L., Howell-Jones R., Waight P., Soldan K., Jit M., Andrews N., Miller E., Beddows S. (2013). A randomized, observer-blinded immunogenicity trial of Cervarix® and Gardasil® Human Papillomavirus vaccines in 12–15 year old girlsPLoS ONE 8e61825.[CrossRef] [Google Scholar]
  14. Duffy S., Shackelton L.A., Holmes E.C. (2008). Rates of evolutionary change in viruses: patterns and determinantsNat Rev Genet 9267276.[CrossRef] [Google Scholar]
  15. Guan P., Howell-Jones R., Li N., Bruni L., de Sanjosé S., Franceschi S., Clifford G.M. (2012). Human papillomavirus types in 115,789 HPV-positive women: a meta-analysis from cervical infection to cancerInt J Cancer 13123492359.[CrossRef] [Google Scholar]
  16. Howell-Jones R., de Silva N., Akpan M., Oakeshott P., Carder C., Coupland L., Sillis M., Mallinson H., Ellis V., other authors. (2012). Prevalence of human papillomavirus (HPV) infections in sexually active adolescents and young women in England, prior to widespread HPV immunisationVaccine 3038673875.[CrossRef] [Google Scholar]
  17. Huo Z., Bissett S.L., Giemza R., Beddows S., Oeser C., Lewis D.J. (2012). Systemic and mucosal immune responses to sublingual or intramuscular human papilloma virus antigens in healthy female volunteersPLoS ONE 7e33736.[CrossRef] [Google Scholar]
  18. Kondo K., Ishii Y., Mori S., Shimabukuro S., Yoshikawa H., Kanda T. (2009). Nuclear location of minor capsid protein L2 is required for expression of a reporter plasmid packaged in HPV51 pseudovirionsVirology 394259265.[CrossRef] [Google Scholar]
  19. Krajden M., Cook D., Yu A., Chow R., Su Q., Mei W., McNeil S., Money D., Dionne M., other authors. (2014). Assessment of HPV 16 and HPV 18 antibody responses by pseudovirus neutralization, Merck cLIA and Merck total IgG LIA immunoassays in a reduced dosage quadrivalent HPV vaccine trialVaccine 32624630.[CrossRef] [Google Scholar]
  20. Lehtinen M., Dillner J. (2013). Clinical trials of human papillomavirus vaccines and beyondNature Reviews. Clinical Oncology 10400410.[CrossRef] [Google Scholar]
  21. Lin S.W., Ghosh A., Porras C., Markt S.C., Rodriguez A.C., Schiffman M., Wacholder S., Kemp T.J., Pinto L.A., other authors. (2013). HPV16 seropositivity and subsequent HPV16 infection risk in a naturally infected population: comparison of serological assaysPLoS ONE 8e53067.[CrossRef] [Google Scholar]
  22. Lungu O., Crum C.P., Silverstein S. (1991). Biologic properties and nucleotide sequence analysis of human papillomavirus type 51J Virol 6542164225. [Google Scholar]
  23. Nakao S., Mori S., Kondo K., Matsumoto K., Yoshikawa H., Kanda T. (2012). Monoclonal antibodies recognizing cross-neutralization epitopes in human papillomavirus 16 minor capsid protein L2Virology 434110117.[CrossRef] [Google Scholar]
  24. Ochi H., Kondo K., Matsumoto K., Oki A., Yasugi T., Furuta R., Hirai Y., Yoshikawa H., Kanda T. (2008). Neutralizing antibodies against human papillomavirus types 16, 18, 31, 52, and 58 in serum samples from women in Japan with low-grade cervical intraepithelial neoplasiaClin Vaccine Immunol 1515361540.[CrossRef] [Google Scholar]
  25. Pastrana D.V., Vass W.C., Lowy D.R., Schiller J.T. (2001). NHPV16 VLP vaccine induces human antibodies that neutralize divergent variants of HPV16Virology 279361369.[CrossRef] [Google Scholar]
  26. Pastrana D.V., Buck C.B., Pang Y.Y., Thompson C.D., Castle P.E., FitzGerald P.C., Krüger Kjaer S., Lowy D.R., Schiller J.T. (2004). Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18Virology 321205216.[CrossRef] [Google Scholar]
  27. Piana A., Sotgiu G., Cocuzza C., Musumeci R., Marras V., Pischedda S., Deidda S., Muresu E., Castiglia P. (2013). High HPV-51 prevalence in invasive cervical cancers: results of a pre-immunization survey in North Sardinia, ItalyPLoS ONE 8e63395.[CrossRef] [Google Scholar]
  28. Raff A.B., Woodham A.W., Raff L.M., Skeate J.G., Yan L., Da Silva D.M., Schelhaas M., Kast W.M. (2013). The evolving field of human papillomavirus receptor research: a review of binding and entryJ Virol 8760626072.[CrossRef] [Google Scholar]
  29. Rhee S.Y., Liu T.F., Kiuchi M., Zioni R., Gifford R.J., Holmes S.P., Shafer R.W. (2008). Natural variation of HIV-1 group M integrase: implications for a new class of antiretroviral inhibitorsRetrovirology 574.[CrossRef] [Google Scholar]
  30. Rositch A.F., Koshiol J., Hudgens M.G., Razzaghi H., Backes D.M., Pimenta J.M., Franco E.L., Poole C., Smith J.S. (2013). Patterns of persistent genital human papillomavirus infection among women worldwide: a literature review and meta-analysisInt J Cancer 13312711285.[CrossRef] [Google Scholar]
  31. Safaeian M., Porras C., Schiffman M., Rodriguez A.C., Wacholder S., Gonzalez P., Quint W., van Doorn L.J., Sherman M.E., other authors. (2010). Epidemiological study of anti-HPV16/18 seropositivity and subsequent risk of HPV16 and -18 infectionsJ Natl Cancer Inst 10216531662.[CrossRef] [Google Scholar]
  32. Safaeian M., Ghosh A., Porras C., Lin S.W., Rodriguez A.C., Schiffman M., Wacholder S., Kemp T., Gonzalez P., other authors. (2012). Direct comparison of HPV16 serological assays used to define HPV-naïve women in HPV vaccine trialsCancer Epidemiol Biomarkers Prev 2115471554.[CrossRef] [Google Scholar]
  33. Schiffman M., Castle P.E., Jeronimo J., Rodriguez A.C., Wacholder S. (2007). Human papillomavirus and cervical cancerLancet 370890907.[CrossRef] [Google Scholar]
  34. Schiller J.T., Castellsagué X., Garland S.M. (2012). A review of clinical trials of human papillomavirus prophylactic vaccinesVaccine 30(Suppl. 5), F123F138.[CrossRef] [Google Scholar]
  35. Seitz H., Schmitt M., Bohmer G., Kopp-Schneider A., Muller M. (2012). Natural variants in the major neutralizing epitope of human papillomavirus minor capsid protein L2Int J Cancer 132E139E148.[CrossRef] [Google Scholar]
  36. Syrjänen S., Waterboer T., Sarkola M., Michael K., Rintala M., Syrjänen K., Grenman S., Pawlita M. (2009). Dynamics of human papillomavirus serology in women followed up for 36 months after pregnancyJ Gen Virol 9015151526.[CrossRef] [Google Scholar]
  37. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013). mega6: Molecular Evolutionary Genetics Analysis version 6.0Mol Biol Evol 3027252729.[CrossRef] [Google Scholar]
  38. Wang J.W., Roden R.B. (2013). L2, the minor capsid protein of papillomavirusVirology 445175186.[CrossRef] [Google Scholar]
  39. Wilson L.E., Pawlita M., Castle P.E., Waterboer T., Sahasrabuddhe V., Gravitt P.E., Schiffman M., Wentzensen N. (2013). Natural immune responses against eight oncogenic human papillomaviruses in the ASCUS-LSIL Triage StudyInt J Cancer 13321722181.[CrossRef] [Google Scholar]
  40. Wilson L., Pawlita M., Castle P.E., Waterboer T., Sahasrabuddhe V., Gravitt P.E., Schiffman M., Wentzensen N. (2014). Seroprevalence of 8 oncogenic human papillomavirus genotypes and acquired immunity against reinfectionJ Infect Dis 210448455.[CrossRef] [Google Scholar]
  41. Xi L.F., Carter J.J., Galloway D.A., Kuypers J., Hughes J.P., Lee S.K., Adam D.E., Kiviat N.B., Koutsky L.A. (2002). Acquisition and natural history of human papillomavirus type 16 variant infection among a cohort of female university studentsCancer Epidemiol Biomarkers Prev 11343351. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000121
Loading
/content/journal/jgv/10.1099/vir.0.000121
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error