1887

Abstract

Flaviviruses deliver their RNA genome into the host-cell cytoplasm by fusing their lipid envelope with a cellular membrane. Expression of the flavivirus pre-membrane and envelope glycoprotein genes in the absence of other viral genes results in the spontaneous assembly and secretion of virus-like particles (VLPs) with membrane fusion activity. Here, we examined the physico-chemical requirements for membrane fusion of VLPs from West Nile and Japanese encephalitis viruses. In a bulk fusion assay, optimal hemifusion (or lipid mixing) efficiencies were observed at 37 °C. Fusion efficiency increased with decreasing pH; half-maximal hemifusion was attained at pH 5.6. The anionic lipids bis(monoacylglycero)phosphate and phosphatidylinositol-3-phosphate, when present in the target membrane, significantly enhanced fusion efficiency, consistent with the emerging model that flaviviruses fuse with intermediate-to-late endosomal compartments, where these lipids are most abundant. In a single-particle fusion assay, VLPs catalysed membrane hemifusion, tracked as lipid mixing with the cellular membrane, on a timescale of 7–20 s after acidification. Lipid mixing kinetics suggest that hemifusion is a kinetically complex, multistep process.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000113
2015-07-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/7/1702.html?itemId=/content/journal/jgv/10.1099/vir.0.000113&mimeType=html&fmt=ahah

References

  1. Acosta E. G., Castilla V., Damonte E. B.. ( 2009; ). Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. . Cell Microbiol 11:, 1533–1549. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bajjalieh S. M., Martin T. F., Floor E.. ( 1989; ). Synaptic vesicle ceramide kinase. A calcium-stimulated lipid kinase that co-purifies with brain synaptic vesicles. . J Biol Chem 264:, 14354–14360.[PubMed]
    [Google Scholar]
  3. Chao L. H., Klein D. E., Schmidt A. G., Peña J. M., Harrison S. C.. ( 2014; ). Sequential conformational rearrangements in flavivirus membrane fusion. . Elife 3:, e04389. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chen Y., Maguire T., Hileman R. E., Fromm J. R., Esko J. D., Linhardt R. J., Marks R. M.. ( 1997; ). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. . Nat Med 3:, 866–871. [CrossRef] [PubMed]
    [Google Scholar]
  5. Das S., Chakraborty S., Basu A.. ( 2010; ). Critical role of lipid rafts in virus entry and activation of phosphoinositide 3′ kinase/Akt signaling during early stages of Japanese encephalitis virus infection in neural stem/progenitor cells. . J Neurochem 115:, 537–549. [CrossRef] [PubMed]
    [Google Scholar]
  6. Davis B. S., Chang G. J., Cropp B., Roehrig J. T., Martin D. A., Mitchell C. J., Bowen R., Bunning M. L.. ( 2001; ). West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. . J Virol 75:, 4040–4047. [CrossRef] [PubMed]
    [Google Scholar]
  7. Ferlenghi I., Clarke M., Ruttan T., Allison S. L., Schalich J., Heinz F. X., Harrison S. C., Rey F. A., Fuller S. D.. ( 2001; ). Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. . Mol Cell 7:, 593–602. [CrossRef] [PubMed]
    [Google Scholar]
  8. Fibriansah G., Ng T. S., Kostyuchenko V. A., Lee J., Lee S., Wang J., Lok S. M.. ( 2013; ). Structural changes in dengue virus when exposed to a temperature of 37°C. . J Virol 87:, 7585–7592. [CrossRef] [PubMed]
    [Google Scholar]
  9. Floyd D. L., Ragains J. R., Skehel J. J., Harrison S. C., van Oijen A. M.. ( 2008; ). Single-particle kinetics of influenza virus membrane fusion. . Proc Natl Acad Sci U S A 105:, 15382–15387. [CrossRef] [PubMed]
    [Google Scholar]
  10. Floyd D. L., Harrison S. C., van Oijen A. M.. ( 2009; ). Method for measurement of viral fusion kinetics at the single particle level. . J Vis Exp 2009:, 1484.[PubMed]
    [Google Scholar]
  11. Gillooly D. J., Morrow I. C., Lindsay M., Gould R., Bryant N. J., Gaullier J. M., Parton R. G., Stenmark H.. ( 2000; ). Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. . EMBO J 19:, 4577–4588. [CrossRef] [PubMed]
    [Google Scholar]
  12. Gollins S. W., Porterfield J. S.. ( 1986; ). pH-dependent fusion between the flavivirus West Nile and liposomal model membranes. . J Gen Virol 67:, 157–166. [CrossRef] [PubMed]
    [Google Scholar]
  13. Goñi F. M., Alonso A.. ( 2006; ). Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. . Biochim Biophys Acta 1758:, 1902–1921. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gould L. H., Sui J., Foellmer H., Oliphant T., Wang T., Ledizet M., Murakami A., Noonan K., Lambeth C. et al. ( 2005; ). Protective and therapeutic capacity of human single-chain Fv–Fc fusion proteins against West Nile virus. . J Virol 79:, 14606–14613. [CrossRef] [PubMed]
    [Google Scholar]
  15. Gruenberg J.. ( 2003; ). Lipids in endocytic membrane transport and sorting. . Curr Opin Cell Biol 15:, 382–388. [CrossRef] [PubMed]
    [Google Scholar]
  16. Gruenberg J., Stenmark H.. ( 2004; ). The biogenesis of multivesicular endosomes. . Nat Rev Mol Cell Biol 5:, 317–323. [CrossRef] [PubMed]
    [Google Scholar]
  17. Holopainen J. M., Lemmich J., Richter F., Mouritsen O. G., Rapp G., Kinnunen P. K.. ( 2000; ). Dimyristoylphosphatidylcholine/C16 : 0-ceramide binary liposomes studied by differential scanning calorimetry and wide- and small-angle X-ray scattering. . Biophys J 78:, 2459–2469. [CrossRef] [PubMed]
    [Google Scholar]
  18. Hung J. J., Hsieh M. T., Young M. J., Kao C. L., King C. C., Chang W.. ( 2004; ). An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. . J Virol 78:, 378–388. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kaufmann B., Vogt M. R., Goudsmit J., Holdaway H. A., Aksyuk A. A., Chipman P. R., Kuhn R. J., Diamond M. S., Rossmann M. G.. ( 2010; ). Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354. . Proc Natl Acad Sci U S A 107:, 18950–18955. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kielian M.. ( 2006; ). Class II virus membrane fusion proteins. . Virology 344:, 38–47. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kobayashi T., Stang E., Fang K. S., de Moerloose P., Parton R. G., Gruenberg J.. ( 1998; ). A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. . Nature 392:, 193–197. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kobayashi T., Beuchat M. H., Lindsay M., Frias S., Palmiter R. D., Sakuraba H., Parton R. G., Gruenberg J.. ( 1999; ). Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. . Nat Cell Biol 1:, 113–118. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kobayashi T., Beuchat M. H., Chevallier J., Makino A., Mayran N., Escola J. M., Lebrand C., Cosson P., Kobayashi T., Gruenberg J.. ( 2002; ). Separation and characterization of late endosomal membrane domains. . J Biol Chem 277:, 32157–32164. [CrossRef] [PubMed]
    [Google Scholar]
  24. Konishi E., Fujii A.. ( 2002; ). Dengue type 2 virus subviral extracellular particles produced by a stably transfected mammalian cell line and their evaluation for a subunit vaccine. . Vaccine 20:, 1058–1067. [CrossRef] [PubMed]
    [Google Scholar]
  25. Konishi E., Pincus S., Paoletti E., Shope R. E., Burrage T., Mason P. W.. ( 1992; ). Mice immunized with a subviral particle containing the Japanese encephalitis virus prM/M and E proteins are protected from lethal JEV infection. . Virology 188:, 714–720. [CrossRef] [PubMed]
    [Google Scholar]
  26. Konishi E., Yamaoka M., Khin-Sane-Win, Kurane I., Mason P. W.. ( 1998; ). Induction of protective immunity against Japanese encephalitis in mice by immunization with a plasmid encoding Japanese encephalitis virus premembrane and envelope genes. . J Virol 72:, 4925–4930.[PubMed]
    [Google Scholar]
  27. Krishnan M. N., Sukumaran B., Pal U., Agaisse H., Murray J. L., Hodge T. W., Fikrig E.. ( 2007; ). Rab 5 is required for the cellular entry of dengue and West Nile viruses. . J Virol 81:, 4881–4885. [CrossRef] [PubMed]
    [Google Scholar]
  28. Le Blanc I., Luyet P. P., Pons V., Ferguson C., Emans N., Petiot A., Mayran N., Demaurex N., Fauré J. et al. ( 2005; ). Endosome-to-cytosol transport of viral nucleocapsids. . Nat Cell Biol 7:, 653–664. [CrossRef] [PubMed]
    [Google Scholar]
  29. Lee C. J., Lin H. R., Liao C. L., Lin Y. L.. ( 2008; ). Cholesterol effectively blocks entry of flavivirus. . J Virol 82:, 6470–6480. [CrossRef] [PubMed]
    [Google Scholar]
  30. Li J. K., Liang J. J., Liao C. L., Lin Y. L.. ( 2012; ). Autophagy is involved in the early step of Japanese encephalitis virus infection. . Microbes Infect 14:, 159–168. [CrossRef] [PubMed]
    [Google Scholar]
  31. Lindenbach B. D., Murray C. L., Thiel H. J., Rice C. M.. ( 2013; ). Flaviviridae. . In Fields Virology, , 6th edn., pp. 712–746. Edited by Knipe D. M., Howley P. M... Philadelphia:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  32. Medigeshi G. R., Hirsch A. J., Streblow D. N., Nikolich-Zugich J., Nelson J. A.. ( 2008; ). West Nile virus entry requires cholesterol-rich membrane microdomains and is independent of αvβ3 integrin. . J Virol 82:, 5212–5219. [CrossRef] [PubMed]
    [Google Scholar]
  33. Möbius W., van Donselaar E., Ohno-Iwashita Y., Shimada Y., Heijnen H. F., Slot J. W., Geuze H. J.. ( 2003; ). Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. . Traffic 4:, 222–231. [CrossRef] [PubMed]
    [Google Scholar]
  34. Modis Y.. ( 2014; ). Relating structure to evolution in class II viral membrane fusion proteins. . Curr Opin Virol 5:, 34–41. [CrossRef] [PubMed]
    [Google Scholar]
  35. Modis Y., Ogata S., Clements D., Harrison S. C.. ( 2005; ). Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. . J Virol 79:, 1223–1231. [CrossRef] [PubMed]
    [Google Scholar]
  36. Moesker B., Rodenhuis-Zybert I. A., Meijerhof T., Wilschut J., Smit J. M.. ( 2010; ). Characterization of the functional requirements of West Nile virus membrane fusion. . J Gen Virol 91:, 389–393. [CrossRef] [PubMed]
    [Google Scholar]
  37. Nollert P., Kiefer H., Jähnig F.. ( 1995; ). Lipid vesicle adsorption versus formation of planar bilayers on solid surfaces. . Biophys J 69:, 1447–1455. [CrossRef] [PubMed]
    [Google Scholar]
  38. Nour A. M., Li Y., Wolenski J., Modis Y.. ( 2013; ). Viral membrane fusion and nucleocapsid delivery into the cytoplasm are distinct events in some flaviviruses. . PLoS Pathog 9:, e1003585. [CrossRef] [PubMed]
    [Google Scholar]
  39. Sabatini B. L., Regehr W. G.. ( 1996; ). Timing of neurotransmission at fast synapses in the mammalian brain. . Nature 384:, 170–172. [CrossRef] [PubMed]
    [Google Scholar]
  40. Schalich J., Allison S. L., Stiasny K., Mandl C. W., Kunz C., Heinz F. X.. ( 1996; ). Recombinant subviral particles from tick-borne encephalitis virus are fusogenic and provide a model system for studying flavivirus envelope glycoprotein functions. . J Virol 70:, 4549–4557.[PubMed]
    [Google Scholar]
  41. Schulze H., Kolter T., Sandhoff K.. ( 2009; ). Principles of lysosomal membrane degradation: cellular topology and biochemistry of lysosomal lipid degradation. . Biochim Biophys Acta 1793:, 674–683. [CrossRef] [PubMed]
    [Google Scholar]
  42. Stiasny K., Koessl C., Heinz F. X.. ( 2003; ). Involvement of lipids indifferent steps of the flavivirus fusion mechanism. . J Virol 77:, 7856–7862. [CrossRef] [PubMed]
    [Google Scholar]
  43. Tani H., Shiokawa M., Kaname Y., Kambara H., Mori Y., Abe T., Moriishi K., Matsuura Y.. ( 2010; ). Involvement of ceramide in the propagation of Japanese encephalitis virus. . J Virol 84:, 2798–2807. [CrossRef] [PubMed]
    [Google Scholar]
  44. van der Schaar H. M., Rust M. J., Chen C., van der Ende-Metselaar H., Wilschut J., Zhuang X., Smit J. M.. ( 2008; ). Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. . PLoS Pathog 4:, e1000244. [CrossRef] [PubMed]
    [Google Scholar]
  45. van Meer G., Voelker D. R., Feigenson G. W.. ( 2008; ). Membrane lipids: where they are and how they behave. . Nat Rev Mol Cell Biol 9:, 112–124. [CrossRef] [PubMed]
    [Google Scholar]
  46. Zaitseva E., Yang S. T., Melikov K., Pourmal S., Chernomordik L. V.. ( 2010; ). Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. . PLoS Pathog 6:, e1001131. [CrossRef] [PubMed]
    [Google Scholar]
  47. Zhang X., Sheng J., Plevka P., Kuhn R. J., Diamond M. S., Rossmann M. G.. ( 2013; ). Dengue structure differs at the temperatures of its human and mosquito hosts. . Proc Natl Acad Sci U S A 110:, 6795–6799. [CrossRef] [PubMed]
    [Google Scholar]
  48. Zhu Y. Z., Cao M. M., Wang W. B., Wang W., Ren H., Zhao P., Qi Z. T.. ( 2012; ). Association of heat-shock protein 70 with lipid rafts is required for Japanese encephalitis virus infection in Huh7 cells. . J Gen Virol 93:, 61–71. [CrossRef] [PubMed]
    [Google Scholar]
  49. Zorman S., Rebane A. A., Ma L., Yang G., Molski M. A., Coleman J., Pincet F., Rothman J. E., Zhang Y.. ( 2014; ). Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins. . Elife 3:, e03348. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000113
Loading
/content/journal/jgv/10.1099/vir.0.000113
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error