1887

Abstract

In , the major poly(A) polymerase (PAP I) is encoded by the gene. In this report, a significant impairment of lysogenization by Shiga toxin-converting (Stx) bacteriophages (Φ24, 933W, P22, P27 and P32) is demonstrated in host cells with a mutant gene. Moreover, lytic development of these phages after both infection and prophage induction was significantly less efficient in the mutant than in the WT host. The increase in DNA accumulation of the Stx phages was lower under conditions of defective RNA polyadenylation. Although shortly after prophage induction, the levels of mRNAs of most phage-borne early genes were higher in the mutant, at subsequent phases of the lytic development, a drastically decreased abundance of certain mRNAs, including those derived from the , and genes, was observed in PAP I-deficient cells. All of these effects observed in the cells were significantly more strongly pronounced in the Stx phages than in bacteriophage λ. Abundance of mRNA derived from the gene was drastically increased shortly (20 min) after prophage induction by mitomycin C and decreased after the next 20 min, while no such changes were observed in non-lysogenic cells treated with this antibiotic. This prophage induction-dependent transient increase in transcript may explain the polyadenylation-driven regulation of phage gene expression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000102
2015-07-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/7/1957.html?itemId=/content/journal/jgv/10.1099/vir.0.000102&mimeType=html&fmt=ahah

References

  1. Aglawe S. B., Fakrudin B., Patole C. B., Bhairappanavar S. B., Koti R. V., Krishnaraj P. U.. ( 2012; ). Quantitative RT-PCR analysis of 20 transcription factor genes of MADS, ARF, HAP2, MBF and HB families in moisture stressed shoot and root tissues of sorghum. . Physiol Mol Biol Plants 18:, 287–300. [CrossRef] [PubMed]
    [Google Scholar]
  2. Allison H. E.. ( 2007; ). Stx-phages: drivers and mediators of the evolution of STEC and STEC-like pathogens. . Future Microbiol 2:, 165–174. [CrossRef] [PubMed]
    [Google Scholar]
  3. Allison H. E., Sergeant M. J., James C. E., Saunders J. R., Smith D. L., Sharp R. J., Marks T. S., McCarthy A. J.. ( 2003; ). Immunity profiles of wild-type and recombinant shiga-like toxin-encoding bacteriophages and characterization of novel double lysogens. . Infect Immun 71:, 3409–3418. [CrossRef] [PubMed]
    [Google Scholar]
  4. Beutin L., Martin A.. ( 2012; ). Outbreak of Shiga toxin-producing Escherichia coli (STEC) O104:H4 infection in Germany causes a paradigm shift with regard to human pathogenicity of STEC strains. . J Food Prot 75:, 408–418. [CrossRef] [PubMed]
    [Google Scholar]
  5. Binns N., Masters M.. ( 2002; ). Expression of the Escherichia coli pcnB gene is translationally limited using an inefficient start codon: a second chromosomal example of translation initiated at AUU. . Mol Microbiol 44:, 1287–1298. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bloch S. K., Felczykowska A., Nejman-Faleńczyk B.. ( 2012; ). Escherichia coli O104:H4 outbreak – have we learnt a lesson from it?. Acta Biochim Pol 59:, 483–488.[PubMed]
    [Google Scholar]
  7. Bloch S., Nejman-Faleńczyk B., Dydecka A., Łoś J. M., Felczykowska A., Węgrzyn A., Węgrzyn G.. ( 2014; ). Different expression patterns of genes from the exo-xis region of bacteriophage λ and Shiga toxin-converting bacteriophage Φ24B following infection or prophage induction in Escherichia coli. . PLoS ONE 9:, e108233. [CrossRef] [PubMed]
    [Google Scholar]
  8. Borges A., Tsai S. M., Caldas D. G.. ( 2012; ). Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses. . Plant Cell Rep 31:, 827–838. [CrossRef] [PubMed]
    [Google Scholar]
  9. Briani F., Del Vecchio E., Migliorini D., Hajnsdorf E., Régnier P., Ghisotti D., Dehò G.. ( 2002; ). RNase E and polyadenyl polymerase I are involved in maturation of CI RNA, the P4 phage immunity factor. . J Mol Biol 318:, 321–331. [CrossRef] [PubMed]
    [Google Scholar]
  10. Cao G.-J., Sarkar N.. ( 1992; ). Identification of the gene for an Escherichia coli poly(A) polymerase. . Proc Natl Acad Sci U S A 89:, 10380–10384. [CrossRef] [PubMed]
    [Google Scholar]
  11. Čikoš S., Bukovská A., Koppel J.. ( 2007; ). Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis. . BMC Mol Biol 8:, 113. [CrossRef] [PubMed]
    [Google Scholar]
  12. Feng J., Zeng R., Chen J.. ( 2008; ). Accurate and efficient data processing for quantitative real-time PCR using a tripartite plant virus as a model. . Biotechniques 44:, 901–912. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gamage S. D., Patton A. K., Hanson J. F., Weiss A. A.. ( 2004; ). Diversity and host range of Shiga toxin-encoding phage. . Infect Immun 72:, 7131–7139. [CrossRef] [PubMed]
    [Google Scholar]
  14. Goodrich A. F., Steege D. A.. ( 1999; ). Roles of polyadenylation and nucleolytic cleavage in the filamentous phage mRNA processing and decay pathways in Escherichia coli.. RNA 5:, 972–985. [CrossRef] [PubMed]
    [Google Scholar]
  15. Gyles C. L.. ( 2007; ). Shiga toxin-producing Escherichia coli: an overview. . J Anim Sci 85: (Suppl), E45–E62. [CrossRef] [PubMed]
    [Google Scholar]
  16. Hunt J. M.. ( 2010; ). Shiga toxin-producing Escherichia coli (STEC). . Clin Lab Med 30:, 21–45. [CrossRef] [PubMed]
    [Google Scholar]
  17. Jasiecki J., Węgrzyn G.. ( 2003; ). Growth-rate dependent RNA polyadenylation in Escherichia coli.. EMBO Rep 4:, 172–177. [CrossRef] [PubMed]
    [Google Scholar]
  18. Jasiecki J., Węgrzyn G.. ( 2006; ). Transcription start sites in the promoter region of the Escherichia coli pcnB (plasmid copy number) gene coding for poly(A) polymerase I. . Plasmid 55:, 169–172. [CrossRef] [PubMed]
    [Google Scholar]
  19. Jensen K. F.. ( 1993; ). The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. . J Bacteriol 175:, 3401–3407.[PubMed]
    [Google Scholar]
  20. Johnson M. D., Popowski J., Cao G. J., Shen P., Sarkar N.. ( 1998; ). Bacteriophage T7 mRNA is polyadenylated. . Mol Microbiol 27:, 23–30. [CrossRef] [PubMed]
    [Google Scholar]
  21. Karch H., Denamur E., Dobrindt U., Finlay B. B., Hengge R., Johannes L., Ron E. Z., Tønjum T., Sansonetti P. J., Vicente M.. ( 2012; ). The enemy within us: lessons from the 2011 European Escherichia coli O104:H4 outbreak. . EMBO Mol Med 4:, 841–848. [CrossRef] [PubMed]
    [Google Scholar]
  22. Klovins J., van Duin J., Olsthoorn R. C.. ( 1997; ). Rescue of the RNA phage genome from RNase III cleavage. . Nucleic Acids Res 25:, 4201–4208. [CrossRef] [PubMed]
    [Google Scholar]
  23. Łoś J. M., Loś M., Węgrzyn G., Węgrzyn A.. ( 2009; ). Differential efficiency of induction of various lambdoid prophages responsible for production of Shiga toxins in response to different induction agents. . Microb Pathog 47:, 289–298. [CrossRef] [PubMed]
    [Google Scholar]
  24. Łoś J. M., Loś M., Węgrzyn G.. ( 2011; ). Bacteriophages carrying Shiga toxin genes: genomic variations, detection and potential treatment of pathogenic bacteria. . Future Microbiol 6:, 909–924. [CrossRef] [PubMed]
    [Google Scholar]
  25. Łoś J. M., Loś M., Węgrzyn A., Węgrzyn G.. ( 2012; ). Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results. . Front Cell Infect Microbiol 2:, 166.[PubMed]
    [Google Scholar]
  26. Masters M., Colloms M. D., Oliver I. R., He L., Macnaughton E. J., Charters Y.. ( 1993; ). The pcnB gene of Escherichia coli, which is required for ColE1 copy number maintenance, is dispensable. . J Bacteriol 175:, 4405–4413.[PubMed]
    [Google Scholar]
  27. Mauro S. A., Koudelka G. B.. ( 2011; ). Shiga toxin: expression, distribution, and its role in the environment. . Toxins (Basel) 3:, 608–625. [CrossRef] [PubMed]
    [Google Scholar]
  28. Mellmann A., Harmsen D., Cummings C. A., Zentz E. B., Leopold S. R., Rico A., Prior K., Szczepanowski R., Ji Y. et al. ( 2011; ). Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. . PLoS ONE 6:, e22751. [CrossRef] [PubMed]
    [Google Scholar]
  29. Mohanty B. K., Kushner S. R.. ( 2000; ). Polynucleotide phosphorylase functions both as a 3′5′ exonuclease and a poly(A) polymerase in Escherichia coli. . Proc Natl Acad Sci U S A 97:, 11966–11971. [CrossRef] [PubMed]
    [Google Scholar]
  30. Mohanty B. K., Kushner S. R.. ( 2006; ). The majority of Escherichia coli mRNAs undergo post-transcriptional modification in exponentially growing cells. . Nucleic Acids Res 34:, 5695–5704. [CrossRef] [PubMed]
    [Google Scholar]
  31. Mohanty B. K., Kushner S. R.. ( 2011; ). Bacterial/archaeal/organellar polyadenylation. . Wiley Interdiscip Rev RNA 2:, 256–276. [CrossRef] [PubMed]
    [Google Scholar]
  32. Mohanty B. K., Kushner S. R.. ( 2013; ). Deregulation of poly(A) polymerase I in Escherichia coli inhibits protein synthesis and leads to cell death. . Nucleic Acids Res 41:, 1757–1766. [CrossRef] [PubMed]
    [Google Scholar]
  33. Mohanty B. K., Maples V. F., Kushner S. R.. ( 2004; ). The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. . Mol Microbiol 54:, 905–920. [CrossRef] [PubMed]
    [Google Scholar]
  34. Mohanty B. K., Maples V. F., Kushner S. R.. ( 2012; ). Polyadenylation helps regulate functional tRNA levels in Escherichia coli. . Nucleic Acids Res 40:, 4589–4603. [CrossRef] [PubMed]
    [Google Scholar]
  35. Nadratowska-Wesołowska B., Słomińska-Wojewódzka M., Łyzeń R., Węgrzyn A., Szalewska-Pałasz A., Węgrzyn G.. ( 2010; ). Transcription regulation of the Escherichia coli pcnB gene coding for poly(A) polymerase I: roles of ppGpp, DksA and sigma factors. . Mol Genet Genomics 284:, 289–305. [CrossRef] [PubMed]
    [Google Scholar]
  36. Nejman B., Loś J. M., Łoś M., Węgrzyn G., Węgrzyn A.. ( 2009; ). Plasmids derived from lambdoid bacteriophages as models for studying replication of mobile genetic elements responsible for the production of Shiga toxins by pathogenic Escherichia coli strains. . J Mol Microbiol Biotechnol 17:, 211–220. [CrossRef] [PubMed]
    [Google Scholar]
  37. Nejman-Faleńczyk B., Golec P., Maciąg M., Wegrzyn A., Węgrzyn G.. ( 2012; ). Inhibition of development of Shiga toxin-converting bacteriophages by either treatment with citrate or amino acid starvation. . Foodborne Pathog Dis 9:, 13–19. [CrossRef] [PubMed]
    [Google Scholar]
  38. Nejman-Faleńczyk B., Bloch S., Licznerska K., Felczykowska A., Dydecka A., Węgrzyn A., Węgrzyn G.. ( 2015; ). Small regulatory RNAs in lambdoid bacteriophages and phage-derived plasmids: not only antisense. . Plasmid. [CrossRef] [PubMed].
    [Google Scholar]
  39. Nowicki D., Kobiela W., Węgrzyn A., Wegrzyn G., Szalewska-Pałasz A.. ( 2013; ). ppGpp-dependent negative control of DNA replication of Shiga toxin-converting bacteriophages in Escherichia coli. . J Bacteriol 195:, 5007–5015. [CrossRef] [PubMed]
    [Google Scholar]
  40. O’Hara E. B., Chekanova J. A., Ingle C. A., Kushner Z. R., Peters E., Kushner S. R.. ( 1995; ). Polyadenylylation helps regulate mRNA decay in Escherichia coli. . Proc Natl Acad Sci U S A 92:, 1807–1811. [CrossRef] [PubMed]
    [Google Scholar]
  41. Ptashne M.. ( 2004; ). A Genetic Switch: Phage Lambda Revisited, , 3rd edn.. Cold Spring Harbour, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  42. Ramakers C., Ruijter J. M., Deprez R. H., Moorman A. F.. ( 2003; ). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. . Neurosci Lett 339:, 62–66. [CrossRef] [PubMed]
    [Google Scholar]
  43. Regier N., Frey B.. ( 2010; ). Experimental comparison of relative RT-qPCR quantification approaches for gene expression studies in poplar. . BMC Mol Biol 11:, 57. [CrossRef] [PubMed]
    [Google Scholar]
  44. Régnier P., Hajnsdorf E.. ( 2013; ). The interplay of Hfq, poly(A) polymerase I and exoribonucleases at the 3′ ends of RNAs resulting from Rho-independent termination: a tentative model. . RNA Biol 10:, 602–609. [CrossRef] [PubMed]
    [Google Scholar]
  45. Riley L. M., Veses-Garcia M., Hillman J. D., Handfield M., McCarthy A. J., Allison H. E.. ( 2012; ). Identification of genes expressed in cultures of E. coli lysogens carrying the Shiga toxin-encoding prophage Φ24B. . BMC Microbiol 12:, 42. [CrossRef] [PubMed]
    [Google Scholar]
  46. Ruijter J. M., Ramakers C., Hoogaars W. M. H., Karlen Y., Bakker O., van den Hoff M. J. B., Moorman A. F. M.. ( 2009; ). Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. . Nucleic Acids Res 37:, e45. [CrossRef] [PubMed]
    [Google Scholar]
  47. Sarkar N., Langley D., Paulus H.. ( 1978; ). Isolation and characterization of polyadenylate-containing RNA from Bacillus brevis. . Biochemistry 17:, 3468–3474. [CrossRef] [PubMed]
    [Google Scholar]
  48. Strauch E., Hammerl J. A., Konietzny A., Schneiker-Bekel S., Arnold W., Goesmann A., Pühler A., Beutin L.. ( 2008; ). Bacteriophage 2851 is a prototype phage for dissemination of the Shiga toxin variant gene 2c in Escherichia coli O157:H7. . Infect Immun 76:, 5466–5477. [CrossRef] [PubMed]
    [Google Scholar]
  49. Szalewska-Pałasz A., Wróbel B., Wegrzyn G.. ( 1998; ). Rapid degradation of polyadenylated oop RNA. . FEBS Lett 432:, 70–72. [CrossRef] [PubMed]
    [Google Scholar]
  50. Tree J. J., Granneman S., McAteer S. P., Tollervey D., Gally D. L.. ( 2014; ). Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli. . Mol Cell 55:, 199–213. [CrossRef] [PubMed]
    [Google Scholar]
  51. Węgrzyn G., Węgrzyn A.. ( 2005; ). Genetic switches during bacteriophage lambda development. . Prog Nucleic Acid Res Mol Biol 79:, 1–48. [CrossRef] [PubMed]
    [Google Scholar]
  52. Węgrzyn G., Licznerska K., Węgrzyn A.. ( 2012; ). Phage λ–new insights into regulatory circuits. . Adv Virus Res 82:, 155–178. [CrossRef] [PubMed]
    [Google Scholar]
  53. Werber D., Krause G., Frank C., Fruth A., Flieger A., Mielke M., Schaade L., Stark K.. ( 2012; ). Outbreaks of virulent diarrheagenic Escherichia coli – are we in control?. BMC Med 10:, 11. [CrossRef] [PubMed]
    [Google Scholar]
  54. Wróbel B., Herman-Antosiewicz A., Szalewska-Pałasz S., Wegrzyn G.. ( 1998; ). Polyadenylation of oop RNA in the regulation of bacteriophage lambda development. . Gene 212:, 57–65. [CrossRef] [PubMed]
    [Google Scholar]
  55. Yonesaki T.. ( 2002; ). Scarce adenylation in bacteriophage T4 mRNAs. . Genes Genet Syst 77:, 219–225. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000102
Loading
/content/journal/jgv/10.1099/vir.0.000102
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error