1887

Abstract

Flaviviruses are a group of single-stranded, positive-sense RNA viruses that generally circulate between arthropod vectors and susceptible vertebrate hosts, producing significant human and veterinary disease burdens. Intensive research efforts have broadened our scientific understanding of the replication cycles of these viruses and have revealed several elegant and tightly co-ordinated post-translational modifications that regulate the activity of viral proteins. The three structural proteins in particular – capsid (C), pre-membrane (prM) and envelope (E) – are subjected to strict regulatory modifications as they progress from translation through virus particle assembly and egress. The timing of proteolytic cleavage events at the C–prM junction directly influences the degree of genomic RNA packaging into nascent virions. Proteolytic maturation of prM by host furin during Golgi transit facilitates rearrangement of the E proteins at the virion surface, exposing the fusion loop and thus increasing particle infectivity. Specific interactions between the prM and E proteins are also important for particle assembly, as prM acts as a chaperone, facilitating correct conformational folding of E. It is only once prM/E heterodimers form that these proteins can be secreted efficiently. The addition of branched glycans to the prM and E proteins during virion transit also plays a key role in modulating the rate of secretion, pH sensitivity and infectivity of flavivirus particles. The insights gained from research into post-translational regulation of structural proteins are beginning to be applied in the rational design of improved flavivirus vaccine candidates and make attractive targets for the development of novel therapeutics.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000097
2015-07-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/7/1551.html?itemId=/content/journal/jgv/10.1099/vir.0.000097&mimeType=html&fmt=ahah

References

  1. Adams S. C., Broom A. K., Sammels L. M., Hartnett A. C., Howard M. J., Coelen R. J., Mackenzie J. S., Hall R. A.. ( 1995; ). Glycosylation and antigenic variation among Kunjin virus isolates. . Virology 206:, 49–56. [CrossRef] [PubMed]
    [Google Scholar]
  2. Adams M. J., King A. M., Carstens E. B.. ( 2013; ). Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2013). . Arch Virol 158:, 2023–2030. [CrossRef] [PubMed]
    [Google Scholar]
  3. Alen M. M., Dallmeier K., Balzarini J., Neyts J., Schols D.. ( 2012; ). Crucial role of the N-glycans on the viral E-envelope glycoprotein in DC-SIGN-mediated dengue virus infection. . Antiviral Res 96:, 280–287. [CrossRef] [PubMed]
    [Google Scholar]
  4. Allison S. L., Stadler K., Mandl C. W., Kunz C., Heinz F. X.. ( 1995; ). Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form. . J Virol 69:, 5816–5820.[PubMed]
    [Google Scholar]
  5. Allison S. L., Tao Y. J., O’Riordain G., Mandl C. W., Harrison S. C., Heinz F. X.. ( 2003; ). Two distinct size classes of immature and mature subviral particles from tick-borne encephalitis virus. . J Virol 77:, 11357–11366. [CrossRef] [PubMed]
    [Google Scholar]
  6. Amberg S. M., Rice C. M.. ( 1999; ). Mutagenesis of the NS2B-NS3-mediated cleavage site in the flavivirus capsid protein demonstrates a requirement for coordinated processing. . J Virol 73:, 8083–8094.[PubMed]
    [Google Scholar]
  7. Amberg S. M., Nestorowicz A., McCourt D. W., Rice C. M.. ( 1994; ). NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies. . J Virol 68:, 3794–3802.[PubMed]
    [Google Scholar]
  8. Arjona A., Wang P., Montgomery R. R., Fikrig E.. ( 2011; ). Innate immune control of West Nile virus infection. . Cell Microbiol 13:, 1648–1658. [CrossRef] [PubMed]
    [Google Scholar]
  9. Barkhash A. V., Perelygin A. A., Babenko V. N., Brinton M. A., Voevoda M. I.. ( 2012; ). Single nucleotide polymorphism in the promoter region of the CD209 gene is associated with human predisposition to severe forms of tick-borne encephalitis. . Antiviral Res 93:, 64–68. [CrossRef] [PubMed]
    [Google Scholar]
  10. Beasley D. W. C., Whiteman M. C., Zhang S. L., Huang C. Y. H., Schneider B. S., Smith D. R., Gromowski G. D., Higgs S., Kinney R. M., Barrett A. D. T.. ( 2005; ). Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. . J Virol 79:, 8339–8347. [CrossRef] [PubMed]
    [Google Scholar]
  11. Bhuvanakantham R., Ng M. L.. ( 2005; ). Analysis of self-association of West Nile virus capsid protein and the crucial role played by Trp 69 in homodimerization. . Biochem Biophys Res Commun 329:, 246–255. [CrossRef] [PubMed]
    [Google Scholar]
  12. Bhuvanakantham R., Cheong Y. K., Ng M. L.. ( 2010; ). West Nile virus capsid protein interaction with importin and HDM2 protein is regulated by protein kinase C-mediated phosphorylation. . Microbes Infect 12:, 615–625. [CrossRef] [PubMed]
    [Google Scholar]
  13. Botha E. M., Markotter W., Wolfaardt M., Paweska J. T., Swanepoel R., Palacios G., Nel L. H., Venter M.. ( 2008; ). Genetic determinants of virulence in pathogenic lineage 2 West Nile virus strains. . Emerg Infect Dis 14:, 222–230. [CrossRef] [PubMed]
    [Google Scholar]
  14. Brault A. C., Langevin S. A., Ramey W. N., Fang Y., Beasley D. W. C., Barker C. M., Sanders T. A., Reisen W. K., Barrett A. D. T., Bowen R. A.. ( 2011; ). Reduced avian virulence and viremia of West Nile virus isolates from Mexico and Texas. . Am J Trop Med Hyg 85:, 758–767. [CrossRef] [PubMed]
    [Google Scholar]
  15. Bryant J. E., Calvert A. E., Mesesan K., Crabtree M. B., Volpe K. E., Silengo S., Kinney R. M., Huang C. Y. H., Miller B. R., Roehrig J. T.. ( 2007; ). Glycosylation of the dengue 2 virus E protein at N67 is critical for virus growth in vitro but not for growth in intrathoracically inoculated Aedes aegypti mosquitoes. . Virology 366:, 415–423. [CrossRef] [PubMed]
    [Google Scholar]
  16. Bulich R., Aaskov J. G.. ( 1992; ). Nuclear localization of dengue 2 virus core protein detected with monoclonal antibodies. . J Gen Virol 73:, 2999–3003. [CrossRef] [PubMed]
    [Google Scholar]
  17. Calvert A. E., Huang C. Y., Blair C. D., Roehrig J. T.. ( 2012; ). Mutations in the West Nile prM protein affect VLP and virion secretion in vitro. . Virology 433:, 35–44. [CrossRef] [PubMed]
    [Google Scholar]
  18. Charrel R. N., Brault A. C., Gallian P., Lemasson J. J., Murgue B., Murri S., Pastorino B., Zeller H., de Chesse R. et al. ( 2003; ). Evolutionary relationship between Old World West Nile virus strains: evidence for viral gene flow between Africa, the Middle East, and Europe. . Virology 315:, 381–388. [CrossRef] [PubMed]
    [Google Scholar]
  19. Chen S. T., Lin Y. L., Huang M. T., Wu M. F., Cheng S. C., Lei H. Y., Lee C. K., Chiou T. W., Wong C. H., Hsieh S. L.. ( 2008; ). CLEC5A is critical for dengue-virus-induced lethal disease. . Nature 453:, 672–676. [CrossRef] [PubMed]
    [Google Scholar]
  20. Chen S. T., Liu R. S., Wu M. F., Lin Y. L., Chen S. Y., Tan D. T. W., Chou T. Y., Tsai I. S., Li L., Hsieh S. L.. ( 2012; ). CLEC5A regulates Japanese encephalitis virus-induced neuroinflammation and lethality. . PLoS Pathog 8:, e1002655. [CrossRef] [PubMed]
    [Google Scholar]
  21. Cheng G., Cox J., Wang P. H., Krishnan M. N., Dai J. F., Qian F., Anderson J. F., Fikrig E.. ( 2010; ). A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes. . Cell 142:, 714–725. [CrossRef] [PubMed]
    [Google Scholar]
  22. Cheong Y. K., Ng M. L.. ( 2011; ). Dephosphorylation of West Nile virus capsid protein enhances the processes of nucleocapsid assembly. . Microbes Infect 13:, 76–84. [CrossRef] [PubMed]
    [Google Scholar]
  23. Ciczora Y., Callens N., Séron K., Rouillé Y., Dubuisson J.. ( 2010; ). Identification of a dominant endoplasmic reticulum-retention signal in yellow fever virus pre-membrane protein. . J Gen Virol 91:, 404–414. [CrossRef] [PubMed]
    [Google Scholar]
  24. Colpitts T. M., Barthel S., Wang P. H., Fikrig E.. ( 2011; ). Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells. . PLoS ONE 6:, e24365. [CrossRef] [PubMed]
    [Google Scholar]
  25. Cook S., Moureau G., Kitchen A., Gould E. A., de Lamballerie X., Holmes E. C., Harbach R. E.. ( 2012; ). Molecular evolution of the insect-specific flaviviruses. . J Gen Virol 93:, 223–234. [CrossRef] [PubMed]
    [Google Scholar]
  26. Davis C. W., Mattei L. M., Nguyen H. Y., Ansarah-Sobrinho C., Doms R. W., Pierson T. C.. ( 2006; a). The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin). . J Biol Chem 281:, 37183–37194. [CrossRef] [PubMed]
    [Google Scholar]
  27. Davis C. W., Nguyen H. Y., Hanna S. L., Sánchez M. D., Doms R. W., Pierson T. C.. ( 2006; b). West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. . J Virol 80:, 1290–1301. [CrossRef] [PubMed]
    [Google Scholar]
  28. Dejnirattisai W., Jumnainsong A., Onsirisakul N., Fitton P., Vasanawathana S., Limpitikul W., Puttikhunt C., Edwards C., Duangchinda T. et al. ( 2010; ). Cross-reacting antibodies enhance dengue virus infection in humans. . Science 328:, 745–748. [CrossRef] [PubMed]
    [Google Scholar]
  29. Dejnirattisai W., Webb A. I., Chan V., Jumnainsong A., Davidson A., Mongkolsapaya J., Screaton G.. ( 2011; ). Lectin switching during dengue virus infection. . J Infect Dis 203:, 1775–1783. [CrossRef] [PubMed]
    [Google Scholar]
  30. Dokland T., Walsh M., Mackenzie J. M., Khromykh A. A., Ee K. H., Wang S.. ( 2004; ). West Nile virus core protein; tetramer structure and ribbon formation. . Structure 12:, 1157–1163. [CrossRef] [PubMed]
    [Google Scholar]
  31. Elshuber S., Mandl C. W.. ( 2005; ). Resuscitating mutations in a furin cleavage-deficient mutant of the flavivirus tick-borne encephalitis virus. . J Virol 79:, 11813–11823. [CrossRef] [PubMed]
    [Google Scholar]
  32. Elshuber S., Allison S. L., Heinz F. X., Mandl C. W.. ( 2003; ). Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. . J Gen Virol 84:, 183–191. [CrossRef] [PubMed]
    [Google Scholar]
  33. Fernandez-Garcia M. D., Mazzon M., Jacobs M., Amara A.. ( 2009; ). Pathogenesis of flavivirus infections: using and abusing the host cell. . Cell Host Microbe 5:, 318–328. [CrossRef] [PubMed]
    [Google Scholar]
  34. Fuchs A., Lin T. Y., Beasley D. W., Stover C. M., Schwaeble W. J., Pierson T. C., Diamond M. S.. ( 2010; ). Direct complement restriction of flavivirus infection requires glycan recognition by mannose-binding lectin. . Cell Host Microbe 8:, 186–195. [CrossRef] [PubMed]
    [Google Scholar]
  35. Fuchs A., Pinto A. K., Schwaeble W. J., Diamond M. S.. ( 2011; ). The lectin pathway of complement activation contributes to protection from West Nile virus infection. . Virology 412:, 101–109. [CrossRef] [PubMed]
    [Google Scholar]
  36. Goto A., Yoshii K., Obara M., Ueki T., Mizutani T., Kariwa H., Takashima I.. ( 2005; ). Role of the N-linked glycans of the prM and E envelope proteins in tick-borne encephalitis virus particle secretion. . Vaccine 23:, 3043–3052. [CrossRef] [PubMed]
    [Google Scholar]
  37. Gubler D. J.. ( 2012; ). Flaviviruses: past, present and future. . In Molecular Virology and Control of Flaviviruses, pp. 1–7. Edited by Shi P. Y... Wymondham, UK:: Caister Academic Press;.
    [Google Scholar]
  38. Guirakhoo F., Hunt A. R., Lewis J. G., Roehrig J. T.. ( 1993; ). Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. . Virology 194:, 219–223. [CrossRef] [PubMed]
    [Google Scholar]
  39. Hacker K., White L., de Silva A. M.. ( 2009; ). N-Linked glycans on dengue viruses grown in mammalian and insect cells. . J Gen Virol 90:, 2097–2106. [CrossRef] [PubMed]
    [Google Scholar]
  40. Hanna S. L., Pierson T. C., Sanchez M. D., Ahmed A. A., Murtadha M. M., Doms R. W.. ( 2005; ). N-Linked glycosylation of West Nile virus envelope proteins influences particle assembly and infectivity. . J Virol 79:, 13262–13274. [CrossRef] [PubMed]
    [Google Scholar]
  41. Hobson-Peters J., Toye P., Sánchez M. D., Bossart K. N., Wang L. F., Clark D. C., Cheah W. Y., Hall R. A.. ( 2008; ). A glycosylated peptide in the West Nile virus envelope protein is immunogenic during equine infection. . J Gen Virol 89:, 3063–3072. [CrossRef] [PubMed]
    [Google Scholar]
  42. Hsieh S. C., Zou G., Tsai W. Y., Qing M., Chang G. J., Shi P. Y., Wang W. K.. ( 2011; ). The C-terminal helical domain of dengue virus precursor membrane protein is involved in virus assembly and entry. . Virology 410:, 170–180. [CrossRef] [PubMed]
    [Google Scholar]
  43. Hsieh S. C., Wu Y. C., Zou G., Nerurkar V. R., Shi P. Y., Wang W. K.. ( 2014; ). Highly conserved residues in the helical domain of dengue virus type 1 precursor membrane protein are involved in assembly, precursor membrane (prM) protein cleavage, and entry. . J Biol Chem 289:, 33149–33160. [CrossRef] [PubMed]
    [Google Scholar]
  44. Ivanyi-Nagy R., Lavergne J. P., Gabus C., Ficheux D., Darlix J. L.. ( 2008; ). RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae. . Nucleic Acids Res 36:, 712–725. [CrossRef] [PubMed]
    [Google Scholar]
  45. Jones C. T., Ma L. X., Burgner J. W., Groesch T. D., Post C. B., Kuhn R. J.. ( 2003; ). Flavivirus capsid is a dimeric alpha-helical protein. . J Virol 77:, 7143–7149. [CrossRef] [PubMed]
    [Google Scholar]
  46. Junjhon J., Lausumpao M., Supasa S., Noisakran S., Songjaeng A., Saraithong P., Chaichoun K., Utaipat U., Keelapang P. et al. ( 2008; ). Differential modulation of prM cleavage, extracellular particle distribution, and virus infectivity by conserved residues at nonfurin consensus positions of the dengue virus pr-M junction. . J Virol 82:, 10776–10791. [CrossRef] [PubMed]
    [Google Scholar]
  47. Junjhon J., Edwards T. J., Utaipat U., Bowman V. D., Holdaway H. A., Zhang W., Keelapang P., Puttikhunt C., Perera R. et al. ( 2010; ). Influence of pr-M cleavage on the heterogeneity of extracellular dengue virus particles. . J Virol 84:, 8353–8358. [CrossRef] [PubMed]
    [Google Scholar]
  48. Junjhon J., Pennington J. G., Edwards T. J., Perera R., Lanman J., Kuhn R. J.. ( 2014; ). Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells. . J Virol 88:, 4687–4697. [CrossRef] [PubMed]
    [Google Scholar]
  49. Kanai R., Kar K., Anthony K., Gould L. H., Ledizet M., Fikrig E., Marasco W. A., Koski R. A., Modis Y.. ( 2006; ). Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. . J Virol 80:, 11000–11008. [CrossRef] [PubMed]
    [Google Scholar]
  50. Kariwa H., Murata R., Totani M., Yoshii K., Takashima I.. ( 2013; ). Increased pathogenicity of West Nile virus (WNV) by glycosylation of envelope protein and seroprevalence of WNV in wild birds in Far Eastern Russia. . Int J Environ Res Public Health 10:, 7144–7164. [CrossRef] [PubMed]
    [Google Scholar]
  51. Keelapang P., Sriburi R., Supasa S., Panyadee N., Songjaeng A., Jairungsri A., Puttikhunt C., Kasinrerk W., Malasit P., Sittisombut N.. ( 2004; ). Alterations of pr-M cleavage and virus export in pr-M junction chimeric dengue viruses. . J Virol 78:, 2367–2381. [CrossRef] [PubMed]
    [Google Scholar]
  52. Keelapang P., Nitatpattana N., Suphatrakul A., Punyahathaikul S., Sriburi R., Pulmanausahakul R., Pichyangkul S., Malasit P., Yoksan S., Sittisombut N.. ( 2013; ). Generation and preclinical evaluation of a DENV-1/2 prM+E chimeric live attenuated vaccine candidate with enhanced prM cleavage. . Vaccine 31:, 5134–5140. [CrossRef] [PubMed]
    [Google Scholar]
  53. Khromykh A. A., Westaway E. G.. ( 1996; ). RNA binding properties of core protein of the flavivirus Kunjin. . Arch Virol 141:, 685–699. [CrossRef] [PubMed]
    [Google Scholar]
  54. Khromykh A. A., Varnavski A. N., Westaway E. G.. ( 1998; ). Encapsidation of the flavivirus kunjin replicon RNA by using a complementation system providing Kunjin virus structural proteins in trans. . J Virol 72:, 5967–5977.[PubMed]
    [Google Scholar]
  55. Kiermayr S., Kofler R. M., Mandl C. W., Messner P., Heinz F. X.. ( 2004; ). Isolation of capsid protein dimers from the tick-borne encephalitis flavivirus and in vitro assembly of capsid-like particles. . J Virol 78:, 8078–8084. [CrossRef] [PubMed]
    [Google Scholar]
  56. Kim J. M., Yun S. I., Song B. H., Hahn Y. S., Lee C. H., Oh H. W., Lee Y. M.. ( 2008; ). A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice. . J Virol 82:, 7846–7862. [CrossRef] [PubMed]
    [Google Scholar]
  57. King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J.. ( 2012; ). Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses. San Diego:: Elsevier Academic Press;.
    [Google Scholar]
  58. Kofler R. M., Heinz F. X., Mandl C. W.. ( 2002; ). Capsid protein C of tick-borne encephalitis virus tolerates large internal deletions and is a favorable target for attenuation of virulence. . J Virol 76:, 3534–3543. [CrossRef] [PubMed]
    [Google Scholar]
  59. Kofler R. M., Leitner A., O’Riordain G., Heinz F. X., Mandl C. W.. ( 2003; ). Spontaneous mutations restore the viability of tick-borne encephalitis virus mutants with large deletions in protein C. . J Virol 77:, 443–451. [CrossRef] [PubMed]
    [Google Scholar]
  60. Konishi E., Mason P. W.. ( 1993; ). Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires cosynthesis with the premembrane protein. . J Virol 67:, 1672–1675.[PubMed]
    [Google Scholar]
  61. Koppel E. A., van Gisbergen K. P., Geijtenbeek T. B. H., van Kooyk Y.. ( 2005; ). Distinct functions of DC-SIGN and its homologues L-SIGN (DC-SIGNR) and mSIGNR1 in pathogen recognition and immune regulation. . Cell Microbiol 7:, 157–165. [CrossRef] [PubMed]
    [Google Scholar]
  62. Kuhn R. J., Zhang W., Rossmann M. G., Pletnev S. V., Corver J., Lenches E., Jones C. T., Mukhopadhyay S., Chipman P. R., Strauss E. G.. ( 2002; ). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. . Cell 108:, 717–725. [CrossRef] [PubMed]
    [Google Scholar]
  63. Kwan W.-H., Navarro-Sanchez E., Dumortier H., Decossas M., Vachon H., dos Santos F. B., Fridman H. W., Rey F. A., Harris E. et al. ( 2008; ). Dermal-type macrophages expressing CD209/DC-SIGN show inherent resistance to dengue virus growth. . PLoS Negl Trop Dis 2:, e311. [CrossRef] [PubMed]
    [Google Scholar]
  64. Lee E., Weir R. C., Dalgarno L.. ( 1997; ). Changes in the dengue virus major envelope protein on passaging and their localization on the three-dimensional structure of the protein. . Virology 232:, 281–290. [CrossRef] [PubMed]
    [Google Scholar]
  65. Lee E., Stocks C. E., Amberg S. M., Rice C. M., Lobigs M.. ( 2000; ). Mutagenesis of the signal sequence of yellow fever virus prM protein: enhancement of signalase cleavage in vitro is lethal for virus production. . J Virol 74:, 24–32. [CrossRef] [PubMed]
    [Google Scholar]
  66. Lee E., Leang S. K., Davidson A., Lobigs M.. ( 2010; ). Both E protein glycans adversely affect dengue virus infectivity but are beneficial for virion release. . J Virol 84:, 5171–5180. [CrossRef] [PubMed]
    [Google Scholar]
  67. Li J., Bhuvanakantham R., Howe J., Ng M. L.. ( 2006; ). The glycosylation site in the envelope protein of West Nile virus (Sarafend) plays an important role in replication and maturation processes. . J Gen Virol 87:, 613–622. [CrossRef] [PubMed]
    [Google Scholar]
  68. Li L., Lok S. M., Yu I. M., Zhang Y., Kuhn R. J., Chen J., Rossmann M. G.. ( 2008; ). The flavivirus precursor membrane–envelope protein complex: structure and maturation. . Science 319:, 1830–1834. [CrossRef] [PubMed]
    [Google Scholar]
  69. Lin Y.-J., Peng J.-G., Wu S.-C.. ( 2010; ). Characterization of the GXXXG motif in the first transmembrane segment of Japanese encephalitis virus precursor membrane (prM) protein. . J Biomed Sci 17:, 39. [CrossRef] [PubMed]
    [Google Scholar]
  70. Lindenbach B. D., Thiel H.-J., Rice C. M.. ( 2007; ). Flaviviridae: the viruses and their replication. . In Fields Virology, , 5th edn., pp. 1101–1152. Edited by Knipe D. M., Howley P. M... Philidelphia:: Lippincott-Raven Publishers;.
    [Google Scholar]
  71. Lobigs M.. ( 1993; ). Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3. . Proc Natl Acad Sci U S A 90:, 6218–6222. [CrossRef] [PubMed]
    [Google Scholar]
  72. Lobigs M., Lee E.. ( 2004; ). Inefficient signalase cleavage promotes efficient nucleocapsid incorporation into budding flavivirus membranes. . J Virol 78:, 178–186. [CrossRef] [PubMed]
    [Google Scholar]
  73. Lobigs M., Lee E., Ng M. L., Pavy M., Lobigs P.. ( 2010; ). A flavivirus signal peptide balances the catalytic activity of two proteases and thereby facilitates virus morphogenesis. . Virology 401:, 80–89. [CrossRef] [PubMed]
    [Google Scholar]
  74. López C., Gil L., Lazo L., Menéndez I., Marcos E., Sánchez J., Valdés I., Falcón V., de la Rosa M. C. et al. ( 2009; ). In vitro assembly of nucleocapsid-like particles from purified recombinant capsid protein of dengue-2 virus. . Arch Virol 154:, 695–698. [CrossRef] [PubMed]
    [Google Scholar]
  75. Lorenz I. C., Allison S. L., Heinz F. X., Helenius A.. ( 2002; ). Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. . J Virol 76:, 5480–5491. [CrossRef] [PubMed]
    [Google Scholar]
  76. Lorenz I. C., Kartenbeck J., Mezzacasa A., Allison S. L., Heinz F. X., Helenius A.. ( 2003; ). Intracellular assembly and secretion of recombinant subviral particles from tick-borne encephalitis virus. . J Virol 77:, 4370–4382. [CrossRef] [PubMed]
    [Google Scholar]
  77. Lozach P. Y., Burleigh L., Staropoli I., Navarro-Sanchez E., Harriague J., Virelizier J. L., Rey F. A., Desprès P., Arenzana-Seisdedos F., Amara A.. ( 2005; ). Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. . J Biol Chem 280:, 23698–23708. [CrossRef] [PubMed]
    [Google Scholar]
  78. Luca V. C., AbiMansour J., Nelson C. A., Fremont D. H.. ( 2012; ). Crystal structure of the Japanese encephalitis virus envelope protein. . J Virol 86:, 2337–2346. [CrossRef] [PubMed]
    [Google Scholar]
  79. Luo Y. Y., Feng J. J., Zhou J. M., Yu Z. Z., Fang D. Y., Yan H. J., Zeng G. C., Jiang L. F.. ( 2013; ). Identification of a novel infection-enhancing epitope on dengue prM using a dengue cross-reacting monoclonal antibody. . BMC Microbiol 13:, 194. [CrossRef] [PubMed]
    [Google Scholar]
  80. Ma L. X., Jones C. T., Groesch T. D., Kuhn R. J., Post C. B.. ( 2004; ). Solution structure of dengue virus capsid protein reveals another fold. . Proc Natl Acad Sci U S A 101:, 3414–3419. [CrossRef] [PubMed]
    [Google Scholar]
  81. Mackenzie J. M., Westaway E. G.. ( 2001; ). Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. . J Virol 75:, 10787–10799. [CrossRef] [PubMed]
    [Google Scholar]
  82. Mackenzie J. S., Gubler D. J., Petersen L. R.. ( 2004; ). Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. . Nat Med 10: (Suppl), S98–S109. [CrossRef] [PubMed]
    [Google Scholar]
  83. Mandl C. W.. ( 2004; ). Flavivirus immunization with capsid-deletion mutants: basics, benefits, and barriers. . Viral Immunol 17:, 461–472. [CrossRef] [PubMed]
    [Google Scholar]
  84. Mandl C. W., Heinz F. X., Kunz C.. ( 1988; ). Sequence of the structural proteins of tick-borne encephalitis virus (western subtype) and comparative analysis with other flaviviruses. . Virology 166:, 197–205. [CrossRef] [PubMed]
    [Google Scholar]
  85. Markoff L., Falgout B., Chang A.. ( 1997; ). A conserved internal hydrophobic domain mediates the stable membrane integration of the dengue virus capsid protein. . Virology 233:, 105–117. [CrossRef] [PubMed]
    [Google Scholar]
  86. Martina B. E. E., Koraka P., van den Doel P., Rimmelzwaan G. F., Haagmans B. L., Osterhaus A. D.. ( 2008; ). DC-SIGN enhances infection of cells with glycosylated West Nile virus in vitro and virus replication in human dendritic cells induces production of IFN-α and TNF-α. . Virus Res 135:, 64–71. [CrossRef] [PubMed]
    [Google Scholar]
  87. Martins I. C., Gomes-Neto F., Faustino A. F., Carvalho F. A., Carneiro F. A., Bozza P. T., Mohana-Borges R., Castanho M. A., Almeida F. C. L. et al. ( 2012; ). The disordered N-terminal region of dengue virus capsid protein contains a lipid-droplet-binding motif. . Biochem J 444:, 405–415. [CrossRef] [PubMed]
    [Google Scholar]
  88. May F. J., Lobigs M., Lee E., Gendle D. J., Mackenzie J. S., Broom A. K., Conlan J. V., Hall R. A.. ( 2006; ). Biological, antigenic and phylogenetic characterization of the flavivirus Alfuy. . J Gen Virol 87:, 329–337. [CrossRef] [PubMed]
    [Google Scholar]
  89. Modis Y., Ogata S., Clements D., Harrison S. C.. ( 2003; ). A ligand-binding pocket in the dengue virus envelope glycoprotein. . Proc Natl Acad Sci U S A 100:, 6986–6991. [CrossRef] [PubMed]
    [Google Scholar]
  90. Moesker B., Rodenhuis-Zybert I. A., Meijerhof T., Wilschut J., Smit J. M.. ( 2010; ). Characterization of the functional requirements of West Nile virus membrane fusion. . J Gen Virol 91:, 389–393. [CrossRef] [PubMed]
    [Google Scholar]
  91. Monath T. P., Cropp C. B., Bowen G. S., Kemp G. E., Mitchell C. J., Gardner J. J.. ( 1980; ). Variation in virulence for mice and rhesus monkeys among St. Louis encephalitis virus strains of different origin. . Am J Trop Med Hyg 29:, 948–962.[PubMed]
    [Google Scholar]
  92. Mondotte J. A., Lozach P. Y., Amara A., Gamarnik A. V.. ( 2007; ). Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. . J Virol 81:, 7136–7148. [CrossRef] [PubMed]
    [Google Scholar]
  93. Mori Y., Okabayashi T., Yamashita T., Zhao Z. J., Wakita T., Yasui K., Hasebe F., Tadano M., Konishi E. et al. ( 2005; ). Nuclear localization of Japanese encephalitis virus core protein enhances viral replication. . J Virol 79:, 3448–3458. [CrossRef] [PubMed]
    [Google Scholar]
  94. Moudy R. M., Zhang B., Shi P. Y., Kramer L. D.. ( 2009; ). West Nile virus envelope protein glycosylation is required for efficient viral transmission by Culex vectors. . Virology 387:, 222–228. [CrossRef] [PubMed]
    [Google Scholar]
  95. Mukhopadhyay S., Kuhn R. J., Rossmann M. G.. ( 2005; ). A structural perspective of the flavivirus life cycle. . Nat Rev Microbiol 3:, 13–22. [CrossRef] [PubMed]
    [Google Scholar]
  96. Muller D. A., Young P. R.. ( 2012; ). The many faces of the flavivirus non-structural glycoprotein NS1. . In Molecular Virology and Control of Flaviviruses, pp. 51–75. Edited by Shi P. Y... Wymondham, UK:: Caister Academic Press;.
    [Google Scholar]
  97. Murata R., Eshita Y., Maeda A., Maeda J., Akita S., Tanaka T., Yoshii K., Kariwa H., Umemura T., Takashima I.. ( 2010; ). Glycosylation of the West Nile virus envelope protein increases in vivo and in vitro viral multiplication in birds. . Am J Trop Med Hyg 82:, 696–704. [CrossRef] [PubMed]
    [Google Scholar]
  98. Murray C. L., Jones C. T., Rice C. M.. ( 2008; ). Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. . Nat Rev Microbiol 6:, 699–708. [CrossRef] [PubMed]
    [Google Scholar]
  99. Muylaert I. R., Chambers T. J., Galler R., Rice C. M.. ( 1996; ). Mutagenesis of the N-linked glycosylation sites of the yellow fever virus NS1 protein: effects on virus replication and mouse neurovirulence. . Virology 222:, 159–168. [CrossRef] [PubMed]
    [Google Scholar]
  100. Navarro-Sanchez E., Altmeyer R., Amara A., Schwartz O., Fieschi F., Virelizier J. L., Arenzana-Seisdedos F., Desprès P.. ( 2003; ). Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. . EMBO Rep 4:, 723–728. [CrossRef] [PubMed]
    [Google Scholar]
  101. Ng M. L., Howe J., Sreenivasan V., Mulders J. J. L.. ( 1994; ). Flavivirus West Nile (Sarafend) egress at the plasma membrane. . Arch Virol 137:, 303–313. [CrossRef] [PubMed]
    [Google Scholar]
  102. Nybakken G. E., Nelson C. A., Chen B. R., Diamond M. S., Fremont D. H.. ( 2006; ). Crystal structure of the West Nile virus envelope glycoprotein. . J Virol 80:, 11467–11474. [CrossRef] [PubMed]
    [Google Scholar]
  103. Ohtaki N., Takahashi H., Kaneko K., Gomi Y., Ishikawa T., Higashi Y., Kurata T., Sata T., Kojima A.. ( 2010; ). Immunogenicity and efficacy of two types of West Nile virus-like particles different in size and maturation as a second-generation vaccine candidate. . Vaccine 28:, 6588–6596. [CrossRef] [PubMed]
    [Google Scholar]
  104. Olson K. E., Blair C. D.. ( 2012; ). Flavivirus–vector interactions. . In Molecular Virology and Control of Flaviviruses, pp. 297–334. Edited by Shi P. Y... Wymondham, UK:: Caister Academic Press;.
    [Google Scholar]
  105. Pang X., Guo Y., Zhou Y., Fu W., Gu X.. ( 2014; ). Highly efficient production of a dengue pseudoinfectious virus. . Vaccine 32:, 3854–3860. [CrossRef] [PubMed]
    [Google Scholar]
  106. Patkar C. G., Jones C. T., Chang Y. H., Warrier R., Kuhn R. J.. ( 2007; ). Functional requirements of the yellow fever virus capsid protein. . J Virol 81:, 6471–6481. [CrossRef] [PubMed]
    [Google Scholar]
  107. Peng J. G., Wu S. C.. ( 2014; ). Glutamic acid at residue 125 of the prM helix domain interacts with positively charged amino acids in E protein domain II for Japanese encephalitis virus-like-particle production. . J Virol 88:, 8386–8396. [CrossRef] [PubMed]
    [Google Scholar]
  108. Plevka P., Battisti A. J., Junjhon J., Winkler D. C., Holdaway H. A., Keelapang P., Sittisombut N., Kuhn R. J., Steven A. C., Rossmann M. G.. ( 2011; ). Maturation of flaviviruses starts from one or more icosahedrally independent nucleation centres. . EMBO Rep 12:, 602–606. [CrossRef] [PubMed]
    [Google Scholar]
  109. Plevka P., Battisti A. J., Sheng J., Rossmann M. G.. ( 2014; ). Mechanism for maturation-related reorganization of flavivirus glycoproteins. . J Struct Biol 185:, 27–31. [CrossRef] [PubMed]
    [Google Scholar]
  110. Pöhlmann S., Soilleux E. J., Baribaud F., Leslie G. J., Morris L. S., Trowsdale J., Lee B., Coleman N., Doms R. W.. ( 2001; ). DC-SIGNR, a DC-SIGN homologue expressed in endothelial cells, binds to human and simian immunodeficiency viruses and activates infection in trans. . Proc Natl Acad Sci U S A 98:, 2670–2675. [CrossRef] [PubMed]
    [Google Scholar]
  111. Pokidysheva E., Zhang Y., Battisti A. J., Bator-Kelly C. M., Chipman P. R., Xiao C. A., Gregorio G. G., Hendrickson W. A., Kuhn R. J., Rossmann M. G.. ( 2006; ). Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. . Cell 124:, 485–493. [CrossRef] [PubMed]
    [Google Scholar]
  112. Post P. R., Santos C. N. D., Carvalho R., Cruz A. C. R., Ricet C. M., Galler R.. ( 1992; ). Heterogeneity in envelope protein sequence and N-linked glycosylation among yellow fever virus vaccine strains. . Virology 188:, 160–167. [CrossRef] [PubMed]
    [Google Scholar]
  113. Prow N. A., May F. J., Westlake D. J., Hurrelbrink R. J., Biron R. M., Leung J. Y., McMinn P. C., Clark D. C., Mackenzie J. S. et al. ( 2011; ). Determinants of attenuation in the envelope protein of the flavivirus Alfuy. . J Gen Virol 92:, 2286–2296. [CrossRef] [PubMed]
    [Google Scholar]
  114. Pryor M. J., Azzola L., Wright P. J., Davidson A. D.. ( 2004; ). Histidine 39 in the dengue virus type 2 M protein has an important role in virus assembly. . J Gen Virol 85:, 3627–3636. [CrossRef] [PubMed]
    [Google Scholar]
  115. Rey F. A., Heinz F. X., Mandl C., Kunz C., Harrison S. C.. ( 1995; ). The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. . Nature 375:, 291–298. [CrossRef] [PubMed]
    [Google Scholar]
  116. Roby J. A., Hall R. A., Khromykh A. A.. ( 2011; ). Nucleic acid-based infectious and pseudo-infectious flavivirus vaccines. . In Replicating Vaccines: a New Generation, pp. 299–320. Edited by Dormitzer P. R., Mandl C. W., Rapuoli R... Basel, Switzerland:: Birkhauser Verlag AG;. [CrossRef]
    [Google Scholar]
  117. Roby J. A., Funk A., Khromykh A. A.. ( 2012; ). Flavivirus replication and assembly. . In Molecular Virology and Control of Flaviviruses, pp. 21–49. Edited by Shi P. Y... Wymondham, UK:: Caister Academic Press;.
    [Google Scholar]
  118. Roby J. A., Hall R. A., Khromykh A. A.. ( 2013; ). West Nile virus genome with glycosylated envelope protein and deletion of alpha helices 1, 2, and 4 in the capsid protein is noninfectious and efficiently secretes subviral particles. . J Virol 87:, 13063–13069. [CrossRef] [PubMed]
    [Google Scholar]
  119. Roby J. A., Bielefeldt-Ohmann H., Prow N. A., Chang D. C., Hall R. A., Khromykh A. A.. ( 2014; ). Increased expression of capsid protein in trans enhances production of single-round infectious particles by West Nile virus DNA vaccine candidate. . J Gen Virol 95:, 2176–2191. [CrossRef] [PubMed]
    [Google Scholar]
  120. Rodenhuis-Zybert I. A., van der Schaar H. M., da Silva Voorham J. M., van der Ende-Metselaar H., Lei H. Y., Wilschut J., Smit J. M.. ( 2010; ). Immature dengue virus: a veiled pathogen?. PLoS Pathog 6:, e1000718. [CrossRef] [PubMed]
    [Google Scholar]
  121. Rodenhuis-Zybert I. A., Wilschut J., Smit J. M.. ( 2011; ). Partial maturation: an immune-evasion strategy of dengue virus?. Trends Microbiol 19:, 248–254. [CrossRef] [PubMed]
    [Google Scholar]
  122. Samsa M. M., Mondotte J. A., Iglesias N. G., Assunção-Miranda I., Barbosa-Lima G., Da Poian A. T., Bozza P. T., Gamarnik A. V.. ( 2009; ). Dengue virus capsid protein usurps lipid droplets for viral particle formation. . PLoS Pathog 5:, e1000632. [CrossRef] [PubMed]
    [Google Scholar]
  123. Scherret J. H., Mackenzie J. S., Khromykh A. A., Hall R. A.. ( 2001; ). Biological significance of glycosylation of the envelope protein of Kunjin virus. . Ann N Y Acad Sci 951:, 361–363. [CrossRef] [PubMed]
    [Google Scholar]
  124. Schlick P., Taucher C., Schittl B., Tran J. L., Kofler R. M., Schueler W., von Gabain A., Meinke A., Mandl C. W.. ( 2009; ). Helices α2 and α3 of West Nile virus capsid protein are dispensable for assembly of infectious virions. . J Virol 83:, 5581–5591. [CrossRef] [PubMed]
    [Google Scholar]
  125. Schrauf S., Mandl C. W., Bell-Sakyi L., Skern T.. ( 2009; ). Extension of flavivirus protein C differentially affects early RNA synthesis and growth in mammalian and arthropod host cells. . J Virol 83:, 11201–11210. [CrossRef] [PubMed]
    [Google Scholar]
  126. Setoh Y. X., Prow N. A., Hobson-Peters J., Lobigs M., Young P. R., Khromykh A. A., Hall R. A.. ( 2012; ). Identification of residues in West Nile virus pre-membrane protein that influence viral particle secretion and virulence. . J Gen Virol 93:, 1965–1975. [CrossRef] [PubMed]
    [Google Scholar]
  127. Shirato K., Kimura T., Mizutani T., Kariwa H., Takashima I.. ( 2004; a). Different chemokine expression in lethal and non-lethal murine West Nile virus infection. . J Med Virol 74:, 507–513. [CrossRef] [PubMed]
    [Google Scholar]
  128. Shirato K., Miyoshi H., Goto A., Ako Y., Ueki T., Kariwa H., Takashima I.. ( 2004; b). Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus. . J Gen Virol 85:, 3637–3645. [CrossRef] [PubMed]
    [Google Scholar]
  129. Somnuke P., Hauhart R. E., Atkinson J. P., Diamond M. S., Avirutnan P.. ( 2011; ). N-Linked glycosylation of dengue virus NS1 protein modulates secretion, cell-surface expression, hexamer stability, and interactions with human complement. . Virology 413:, 253–264. [CrossRef] [PubMed]
    [Google Scholar]
  130. Stadler K., Allison S. L., Schalich J., Heinz F. X.. ( 1997; ). Proteolytic activation of tick-borne encephalitis virus by furin. . J Virol 71:, 8475–8481.[PubMed]
    [Google Scholar]
  131. Stocks C. E., Lobigs M.. ( 1998; ). Signal peptidase cleavage at the flavivirus C–prM junction: dependence on the viral NS2B-3 protease for efficient processing requires determinants in C, the signal peptide, and prM. . J Virol 72:, 2141–2149.[PubMed]
    [Google Scholar]
  132. Tan T. T., Bhuvanakantham R., Li J., Howe J., Ng M. L.. ( 2009; ). Tyrosine 78 of premembrane protein is essential for assembly of West Nile virus. . J Gen Virol 90:, 1081–1092. [CrossRef] [PubMed]
    [Google Scholar]
  133. Tassaneetrithep B., Burgess T. H., Granelli-Piperno A., Trumpfheller C., Finke J., Sun W., Eller M. A., Pattanapanyasat K., Sarasombath S. et al. ( 2003; ). DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. . J Exp Med 197:, 823–829. [CrossRef] [PubMed]
    [Google Scholar]
  134. Teoh P. G., Huang Z. S., Pong W. L., Chen P. C., Wu H. N.. ( 2014; ). Maintenance of dimer conformation by the dengue virus core protein α4–α4′ helix pair is critical for nucleocapsid formation and virus production. . J Virol 88:, 7998–8015. [CrossRef] [PubMed]
    [Google Scholar]
  135. Totani M., Yoshii K., Kariwa H., Takashima I.. ( 2011; ). Glycosylation of the envelope protein of West Nile Virus affects its replication in chicks. . Avian Dis 55:, 561–568. [CrossRef] [PubMed]
    [Google Scholar]
  136. van der Meulen K. M., Pensaert M. B., Nauwynck H. J.. ( 2005; ). West Nile virus in the vertebrate world. . Arch Virol 150:, 637–657. [CrossRef] [PubMed]
    [Google Scholar]
  137. von Lindern J. J., Aroner S., Barrett N. D., Wicker J. A., Davis C. T., Barrett A. D. T.. ( 2006; ). Genome analysis and phylogenetic relationships between east, central and west African isolates of Yellow fever virus. . J Gen Virol 87:, 895–907. [CrossRef] [PubMed]
    [Google Scholar]
  138. Vorndam V., Mathews J. H., Barrett A. D. T., Roehrig J. T., Trent D. W.. ( 1993; ). Molecular and biological characterization of a non-glycosylated isolate of St Louis encephalitis virus. . J Gen Virol 74:, 2653–2660. [CrossRef] [PubMed]
    [Google Scholar]
  139. Wang P. G., Kudelko M., Lo J., Siu L. Y. L., Kwok K. T. H., Sachse M., Nicholls J. M., Bruzzone R., Altmeyer R. M., Nal B.. ( 2009; ). Efficient assembly and secretion of recombinant subviral particles of the four dengue serotypes using native prM and E proteins. . PLoS ONE 4:, e8325. [CrossRef] [PubMed]
    [Google Scholar]
  140. Wang L., Chen R. F., Liu J. W., Lee I. K., Lee C. P., Kuo H. C., Huang S. K., Yang K. D.. ( 2011; ). DC-SIGN (CD209) Promoter -336 A/G polymorphism is associated with dengue hemorrhagic fever and correlated to DC-SIGN expression and immune augmentation. . PLoS Negl Trop Dis 5:, e934. [CrossRef] [PubMed]
    [Google Scholar]
  141. Watson A. A., Lebedev A. A., Hall B. A., Fenton-May A. E., Vagin A. A., Dejnirattisai W., Felce J., Mongkolsapaya J., Palma A. S. et al. ( 2011; ). Structural flexibility of the macrophage dengue virus receptor CLEC5A: implications for ligand binding and signaling. . J Biol Chem 286:, 24208–24218. [CrossRef] [PubMed]
    [Google Scholar]
  142. Welsch S., Miller S., Romero-Brey I., Merz A., Bleck C. K. E., Walther P., Fuller S. D., Antony C., Krijnse-Locker J., Bartenschlager R.. ( 2009; ). Composition and three-dimensional architecture of the dengue virus replication and assembly sites. . Cell Host Microbe 5:, 365–375. [CrossRef] [PubMed]
    [Google Scholar]
  143. Wengler G., Castle E., Leidner U., Nowak T., Wengler G.. ( 1985; ). Sequence analysis of the membrane protein V3 of the flavivirus West Nile virus and of its gene. . Virology 147:, 264–274. [CrossRef] [PubMed]
    [Google Scholar]
  144. Westaway E. G., Khromykh A. A., Kenney M. T., Mackenzie J. M., Jones M. K.. ( 1997; ). Proteins C and NS4B of the flavivirus Kunjin translocate independently into the nucleus. . Virology 234:, 31–41. [CrossRef] [PubMed]
    [Google Scholar]
  145. Winkler G., Heinz F. X., Kunz C.. ( 1987; ). Studies on the glycosylation of flavivirus E proteins and the role of carbohydrate in antigenic structure. . Virology 159:, 237–243. [CrossRef] [PubMed]
    [Google Scholar]
  146. Wu M. F., Chen S. T., Yang A. H., Lin W. W., Lin Y. L., Chen N. J., Tsai I. S., Li L., Hsieh S. L.. ( 2013; ). CLEC5A is critical for dengue virus-induced inflammasome activation in human macrophages. . Blood 121:, 95–106. [CrossRef] [PubMed]
    [Google Scholar]
  147. Yamshchikov V. F., Compans R. W.. ( 1993; ). Regulation of the late events in flavivirus protein processing and maturation. . Virology 192:, 38–51. [CrossRef] [PubMed]
    [Google Scholar]
  148. Yoshii K., Igarashi M., Ichii O., Yokozawa K., Ito K., Kariwa H., Takashima I.. ( 2012; ). A conserved region in the prM protein is a critical determinant in the assembly of flavivirus particles. . J Gen Virol 93:, 27–38. [CrossRef] [PubMed]
    [Google Scholar]
  149. Yoshii K., Yanagihara N., Ishizuka M., Sakai M., Kariwa H.. ( 2013; ). N-Linked glycan in tick-borne encephalitis virus envelope protein affects viral secretion in mammalian cells, but not in tick cells. . J Gen Virol 94:, 2249–2258. [CrossRef] [PubMed]
    [Google Scholar]
  150. Yu I. M., Zhang W., Holdaway H. A., Li L., Kostyuchenko V. A., Chipman P. R., Kuhn R. J., Rossmann M. G., Chen J.. ( 2008; ). Structure of the immature dengue virus at low pH primes proteolytic maturation. . Science 319:, 1834–1837. [CrossRef] [PubMed]
    [Google Scholar]
  151. Yu I. M., Holdaway H. A., Chipman P. R., Kuhn R. J., Rossmann M. G., Chen J.. ( 2009; ). Association of the pr peptides with dengue virus at acidic pH blocks membrane fusion. . J Virol 83:, 12101–12107. [CrossRef] [PubMed]
    [Google Scholar]
  152. Zai J., Mei L., Wang C., Cao S., Fu Z. F., Chen H., Song Y.. ( 2013; ). N-Glycosylation of the premembrane protein of Japanese encephalitis virus is critical for folding of the envelope protein and assembly of virus-like particles. . Acta Virol 57:, 27–33. [CrossRef] [PubMed]
    [Google Scholar]
  153. Zhang Y., Corver J., Chipman P. R., Zhang W., Pletnev S. V., Sedlak D., Baker T. S., Strauss J. H., Kuhn R. J., Rossmann M. G.. ( 2003; ). Structures of immature flavivirus particles. . EMBO J 22:, 2604–2613. [CrossRef] [PubMed]
    [Google Scholar]
  154. Zhang Y., Zhang W., Ogata S., Clements D., Strauss J. H., Baker T. S., Kuhn R. J., Rossmann M. G.. ( 2004; ). Conformational changes of the flavivirus E glycoprotein. . Structure 12:, 1607–1618. [CrossRef] [PubMed]
    [Google Scholar]
  155. Zhang Y., Kaufmann B., Chipman P. R., Kuhn R. J., Rossmann M. G.. ( 2007; a). Structure of immature West Nile virus. . J Virol 81:, 6141–6145. [CrossRef] [PubMed]
    [Google Scholar]
  156. Zhang Y., Kostyuchenko V. A., Rossmann M. G.. ( 2007; b). Structural analysis of viral nucleocapsids by subtraction of partial projections. . J Struct Biol 157:, 356–364. [CrossRef] [PubMed]
    [Google Scholar]
  157. Zhang Y., Chen P. Y., Cao R. B., Gu J. Y.. ( 2011; ). Mutation of putative N-linked glycosylation sites in Japanese encephalitis virus premembrane and envelope proteins enhances humoral immunity in BALB/C mice after DNA vaccination. . Virol J 8:, 138. [CrossRef] [PubMed]
    [Google Scholar]
  158. Zhang Q., Hunke C., Yau Y. H., Seow V., Lee S., Tanner L. B., Guan X. L., Wenk M. R., Fibriansah G. et al. ( 2012; ). The stem region of premembrane protein plays an important role in the virus surface protein rearrangement during dengue maturation. . J Biol Chem 287:, 40525–40534. [CrossRef] [PubMed]
    [Google Scholar]
  159. Zhang W., Kaufmann B., Chipman P. R., Kuhn R. J., Rossmann M. G.. ( 2013; a). Membrane curvature in flaviviruses. . J Struct Biol 183:, 86–94. [CrossRef] [PubMed]
    [Google Scholar]
  160. Zhang X., Ge P., Yu X., Brannan J. M., Bi G., Zhang Q., Schein S., Zhou Z. H.. ( 2013; b). Cryo-EM structure of the mature dengue virus at 3.5-Å resolution. . Nat Struct Mol Biol 20:, 105–110. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000097
Loading
/content/journal/jgv/10.1099/vir.0.000097
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error