1887

Abstract

Rotavirus is a leading cause of severe gastroenteritis in infants worldwide. Rotavirus nonstructural protein 1 (NSP1) is a virulence factor that inhibits innate host immune responses. NSP1 from some rotaviruses targets host interferon response factors (IRFs), leading to inhibition of type I interferon expression. A few rotaviruses encode an NSP1 that inhibits the NF-κB pathway by targeting β-TrCP, a protein required for IκB degradation and NF-κB activation. Available evidence suggests that these NSP1 properties involve proteosomal degradation of target proteins. We show here that NSP1 from several human rotaviruses and porcine rotavirus CRW-8 inhibits the NF-κB pathway, but cannot degrade IRF3. Furthermore, β-TrCP levels were much reduced in cells infected with these rotaviruses. This provides strong evidence that β-TrCP degradation is required for NF-κB pathway inhibition by NSP1 and demonstrates the relevance of β-TrCP degradation to rotavirus infection. C-terminal regions of NSP1, including a serine-containing motif resembling the β-TrCP recognition motif of IκB, were required for NF-κB inhibition. CRW-8 infection of HT-29 intestinal epithelial cells induced significant levels of IFN-β and CCL5 but not IL-8. This contrasts with monkey rotavirus SA11-4F, whose NSP1 inhibits IRF3 but not NF-κB. Substantial amounts of IL-8 but not IFN-β or CCL5 were secreted from HT-29 cells infected with SA11-4F. Our results show that human rotaviruses commonly inhibit the NF-κB pathway by degrading β-TrCP and thus stabilizing IκB. They suggest that NSP1 plays an important role during human rotavirus infection by inhibiting the expression of NF-κB-dependent cytokines, such as IL-8.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000093
2015-07-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/7/1768.html?itemId=/content/journal/jgv/10.1099/vir.0.000093&mimeType=html&fmt=ahah

References

  1. Angel J. , Franco M. A. , Greenberg H. B. . ( 2012; ). Rotavirus immune responses and correlates of protection. . Curr Opin Virol 2:, 419–425. [CrossRef] [PubMed]
    [Google Scholar]
  2. Arnold M. M. , Patton J. T. . ( 2011; ). Diversity of interferon antagonist activities mediated by NSP1 proteins of different rotavirus strains. . J Virol 85:, 1970–1979. [CrossRef] [PubMed]
    [Google Scholar]
  3. Arnold, M., Patton, J. T. & McDonald, S. M. (2009). Culturing, storage, and quantification of rotaviruses. Current Protocols in Microbiology, Chapter 15, Unit 15C.3, 15C.3.1–15C.3.24. [CrossRef]
  4. Arnold M. M. , Barro M. , Patton J. T. . ( 2013; ). Rotavirus NSP1 mediates degradation of interferon regulatory factors through targeting of the dimerization domain. . J Virol 87:, 9813–9821. [CrossRef] [PubMed]
    [Google Scholar]
  5. Barro M. , Patton J. T. . ( 2005; ). Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. . Proc Natl Acad Sci U S A 102:, 4114–4119. [CrossRef] [PubMed]
    [Google Scholar]
  6. Barro M. , Patton J. T. . ( 2007; ). Rotavirus NSP1 inhibits expression of type I interferon by antagonizing the function of interferon regulatory factors IRF3, IRF5, and IRF7. . J Virol 81:, 4473–4481. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bour S. , Perrin C. , Akari H. , Strebel K. . ( 2001; ). The human immunodeficiency virus type 1 Vpu protein inhibits NF-κ B activation by interfering with β TrCP-mediated degradation of Ikappa B. . J Biol Chem 276:, 15920–15928. [CrossRef] [PubMed]
    [Google Scholar]
  8. Broquet A. H. , Hirata Y. , McAllister C. S. , Kagnoff M. F. . ( 2011; ). RIG-I/MDA5/MAVS are required to signal a protective IFN response in rotavirus-infected intestinal epithelium. . J Immunol 186:, 1618–1626. [CrossRef] [PubMed]
    [Google Scholar]
  9. Casola A. , Estes M. K. , Crawford S. E. , Ogra P. L. , Ernst P. B. , Garofalo R. P. , Crowe S. E. . ( 1998; ). Rotavirus infection of cultured intestinal epithelial cells induces secretion of CXC and CC chemokines. . Gastroenterology 114:, 947–955. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chevenet F. , Brun C. , Bañuls A. L. , Jacq B. , Christen R. . ( 2006; ). TreeDyn: towards dynamic graphics and annotations for analyses of trees. . BMC Bioinformatics 7:, 439. [CrossRef] [PubMed]
    [Google Scholar]
  11. Coulson B. S. , Kirkwood C. . ( 1991; ). Relation of VP7 amino acid sequence to monoclonal antibody neutralization of rotavirus and rotavirus monotype. . J Virol 65:, 5968–5974.[PubMed]
    [Google Scholar]
  12. Dereeper A. , Guignon V. , Blanc G. , Audic S. , Buffet S. , Chevenet F. , Dufayard J. F. , Guindon S. , Lefort V. et al. ( 2008; ). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. . Nucleic Acids Res 36: (Web Server issue), W465–W469. [CrossRef] [PubMed]
    [Google Scholar]
  13. Dong H. J. , Qian Y. , Huang T. , Zhu R. N. , Zhao L. Q. , Zhang Y. , Li R. C. , Li Y. P. . ( 2013; ). Identification of circulating porcine-human reassortant G4P[6] rotavirus from children with acute diarrhea in China by whole genome analyses. . Infect Genet Evol 20:, 155–162. [CrossRef] [PubMed]
    [Google Scholar]
  14. Edgar R. C. . ( 2004; ). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef] [PubMed]
    [Google Scholar]
  15. Feng N. , Yasukawa L. L. , Sen A. , Greenberg H. B. . ( 2013; ). Permissive replication of homologous murine rotavirus in the mouse intestine is primarily regulated by VP4 and NSP1. . J Virol 87:, 8307–8316. [CrossRef] [PubMed]
    [Google Scholar]
  16. Graff J. W. , Mitzel D. N. , Weisend C. M. , Flenniken M. L. , Hardy M. E. . ( 2002; ). Interferon regulatory factor 3 is a cellular partner of rotavirus NSP1. . J Virol 76:, 9545–9550. [CrossRef] [PubMed]
    [Google Scholar]
  17. Graff J. W. , Ewen J. , Ettayebi K. , Hardy M. E. . ( 2007; ). Zinc-binding domain of rotavirus NSP1 is required for proteasome-dependent degradation of IRF3 and autoregulatory NSP1 stability. . J Gen Virol 88:, 613–620. [CrossRef] [PubMed]
    [Google Scholar]
  18. Graff J. W. , Ettayebi K. , Hardy M. E. . ( 2009; ). Rotavirus NSP1 inhibits NFkappaB activation by inducing proteasome-dependent degradation of β-TrCP: a novel mechanism of IFN antagonism. . PLoS Pathog 5:, e1000280. [CrossRef] [PubMed]
    [Google Scholar]
  19. Guindon S. , Dufayard J. F. , Lefort V. , Anisimova M. , Hordijk W. , Gascuel O. . ( 2010; ). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. . Syst Biol 59:, 307–321. [CrossRef] [PubMed]
    [Google Scholar]
  20. Halasz P. , Holloway G. , Turner S. J. , Coulson B. S. . ( 2008; ). Rotavirus replication in intestinal cells differentially regulates integrin expression by a phosphatidylinositol 3-kinase-dependent pathway, resulting in increased cell adhesion and virus yield. . J Virol 82:, 148–160. [CrossRef] [PubMed]
    [Google Scholar]
  21. Harte M. T. , Haga I. R. , Maloney G. , Gray P. , Reading P. C. , Bartlett N. W. , Smith G. L. , Bowie A. , O’Neill L. A. . ( 2003; ). The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. . J Exp Med 197:, 343–351. [CrossRef] [PubMed]
    [Google Scholar]
  22. Holloway G. , Coulson B. S. . ( 2006; ). Rotavirus activates JNK and p38 signaling pathways in intestinal cells, leading to AP-1-driven transcriptional responses and enhanced virus replication. . J Virol 80:, 10624–10633. [CrossRef] [PubMed]
    [Google Scholar]
  23. Holloway G. , Coulson B. S. . ( 2013; ). Innate cellular responses to rotavirus infection. . J Gen Virol 94:, 1151–1160. [CrossRef] [PubMed]
    [Google Scholar]
  24. Holloway G. , Truong T. T. , Coulson B. S. . ( 2009; ). Rotavirus antagonizes cellular antiviral responses by inhibiting the nuclear accumulation of STAT1, STAT2, and NF-kappaB. . J Virol 83:, 4942–4951. [CrossRef] [PubMed]
    [Google Scholar]
  25. Holloway G. , Dang V. T. , Jans D. A. , Coulson B. S. . ( 2014; ). Rotavirus inhibits IFN-induced STAT nuclear translocation by a mechanism that acts after STAT binding to importin-α. . J Gen Virol 95:, 1723–1733. [CrossRef] [PubMed]
    [Google Scholar]
  26. Liang Q. , Fu B. , Wu F. , Li X. , Yuan Y. , Zhu F. . ( 2012; ). ORF45 of Kaposi’s sarcoma-associated herpesvirus inhibits phosphorylation of interferon regulatory factor 7 by IKKϵ and TBK1 as an alternative substrate. . J Virol 86:, 10162–10172. [CrossRef] [PubMed]
    [Google Scholar]
  27. Londrigan S. L. , Hewish M. J. , Thomson M. J. , Sanders G. M. , Mustafa H. , Coulson B. S. . ( 2000; ). Growth of rotaviruses in continuous human and monkey cell lines that vary in their expression of integrins. . J Gen Virol 81:, 2203–2213.[PubMed]
    [Google Scholar]
  28. Mansur D. S. , Maluquer de Motes C. , Unterholzner L. , Sumner R. P. , Ferguson B. J. , Ren H. , Strnadova P. , Bowie A. G. , Smith G. L. . ( 2013; ). Poxvirus targeting of E3 ligase β-TrCP by molecular mimicry: a mechanism to inhibit NF-κB activation and promote immune evasion and virulence. . PLoS Pathog 9:, e1003183. [CrossRef] [PubMed]
    [Google Scholar]
  29. Patton J. T. , Taraporewala Z. , Chen D. , Chizhikov V. , Jones M. , Elhelu A. , Collins M. , Kearney K. , Wagner M. et al. ( 2001; ). Effect of intragenic rearrangement and changes in the 3′ consensus sequence on NSP1 expression and rotavirus replication. . J Virol 75:, 2076–2086. [CrossRef] [PubMed]
    [Google Scholar]
  30. Randall R. E. , Goodbourn S. . ( 2008; ). Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. . J Gen Virol 89:, 1–47.[PubMed] [CrossRef]
    [Google Scholar]
  31. Rollo E. E. , Kumar K. P. , Reich N. C. , Cohen J. , Angel J. , Greenberg H. B. , Sheth R. , Anderson J. , Oh B. et al. ( 1999; ). The epithelial cell response to rotavirus infection. . J Immunol 163:, 4442–4452.[PubMed]
    [Google Scholar]
  32. Sato T. , Suzuki H. , Kitaoka S. , Konno T. , Ishida N. . ( 1986; ). Patterns of polypeptide synthesis in human rotavirus infected cells. . Arch Virol 90:, 29–40. [CrossRef] [PubMed]
    [Google Scholar]
  33. Sen A. , Rott L. , Phan N. , Mukherjee G. , Greenberg H. B. . ( 2014; ). Rotavirus NSP1 protein inhibits interferon-mediated STAT1 activation. . J Virol 88:, 41–53. [CrossRef] [PubMed]
    [Google Scholar]
  34. Stadnyk A. W. . ( 2002; ). Intestinal epithelial cells as a source of inflammatory cytokines and chemokines. . Can J Gastroenterol 16:, 241–246.[PubMed]
    [Google Scholar]
  35. Theil K. W. , Bohl E. H. , Agnes A. G. . ( 1977; ). Cell culture propagation of porcine rotavirus (reovirus-like agent). . Am J Vet Res 38:, 1765–1768.[PubMed]
    [Google Scholar]
  36. Wang X. , Hussain S. , Wang E. J. , Wang X. , Li M. O. , García-Sastre A. , Beg A. A. . ( 2007; ). Lack of essential role of NF-κ B p50, RelA, and cRel subunits in virus-induced type 1 IFN expression. . J Immunol 178:, 6770–6776. [CrossRef] [PubMed]
    [Google Scholar]
  37. Wang J. , Basagoudanavar S. H. , Wang X. , Hopewell E. , Albrecht R. , García-Sastre A. , Balachandran S. , Beg A. A. . ( 2010; ). NF-κB RelA subunit is crucial for early IFN-β expression and resistance to RNA virus replication. . J Immunol 185:, 1720–1729. [CrossRef] [PubMed]
    [Google Scholar]
  38. Zhang R. , Jha B. K. , Ogden K. M. , Dong B. , Zhao L. , Elliott R. , Patton J. T. , Silverman R. H. , Weiss S. R. . ( 2013; ). Homologous 2′,5′-phosphodiesterases from disparate RNA viruses antagonize antiviral innate immunity. . Proc Natl Acad Sci U S A 110:, 13114–13119. [CrossRef] [PubMed]
    [Google Scholar]
  39. Zhu F. X. , King S. M. , Smith E. J. , Levy D. E. , Yuan Y. . ( 2002; ). A Kaposi’s sarcoma-associated herpesviral protein inhibits virus-mediated induction of type I interferon by blocking IRF-7 phosphorylation and nuclear accumulation. . Proc Natl Acad Sci U S A 99:, 5573–5578. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000093
Loading
/content/journal/jgv/10.1099/vir.0.000093
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error