1887

Abstract

Rotavirus is a leading cause of severe gastroenteritis in infants worldwide. Rotavirus nonstructural protein 1 (NSP1) is a virulence factor that inhibits innate host immune responses. NSP1 from some rotaviruses targets host interferon response factors (IRFs), leading to inhibition of type I interferon expression. A few rotaviruses encode an NSP1 that inhibits the NF-κB pathway by targeting β-TrCP, a protein required for IκB degradation and NF-κB activation. Available evidence suggests that these NSP1 properties involve proteosomal degradation of target proteins. We show here that NSP1 from several human rotaviruses and porcine rotavirus CRW-8 inhibits the NF-κB pathway, but cannot degrade IRF3. Furthermore, β-TrCP levels were much reduced in cells infected with these rotaviruses. This provides strong evidence that β-TrCP degradation is required for NF-κB pathway inhibition by NSP1 and demonstrates the relevance of β-TrCP degradation to rotavirus infection. C-terminal regions of NSP1, including a serine-containing motif resembling the β-TrCP recognition motif of IκB, were required for NF-κB inhibition. CRW-8 infection of HT-29 intestinal epithelial cells induced significant levels of IFN-β and CCL5 but not IL-8. This contrasts with monkey rotavirus SA11-4F, whose NSP1 inhibits IRF3 but not NF-κB. Substantial amounts of IL-8 but not IFN-β or CCL5 were secreted from HT-29 cells infected with SA11-4F. Our results show that human rotaviruses commonly inhibit the NF-κB pathway by degrading β-TrCP and thus stabilizing IκB. They suggest that NSP1 plays an important role during human rotavirus infection by inhibiting the expression of NF-κB-dependent cytokines, such as IL-8.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000093
2015-07-01
2022-01-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/7/1768.html?itemId=/content/journal/jgv/10.1099/vir.0.000093&mimeType=html&fmt=ahah

References

  1. Angel J., Franco M. A., Greenberg H. B. (2012). Rotavirus immune responses and correlates of protection. Curr Opin Virol 2, 419425. [View Article][PubMed] [Google Scholar]
  2. Arnold M. M., Patton J. T. (2011). Diversity of interferon antagonist activities mediated by NSP1 proteins of different rotavirus strains. J Virol 85, 19701979. [View Article][PubMed] [Google Scholar]
  3. Arnold, M., Patton, J. T. & McDonald, S. M. (2009). Culturing, storage, and quantification of rotaviruses. Current Protocols in Microbiology, Chapter 15, Unit 15C.3, 15C.3.1–15C.3.24. [View Article]
  4. Arnold M. M., Barro M., Patton J. T. (2013). Rotavirus NSP1 mediates degradation of interferon regulatory factors through targeting of the dimerization domain. J Virol 87, 98139821. [View Article][PubMed] [Google Scholar]
  5. Barro M., Patton J. T. (2005). Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. Proc Natl Acad Sci U S A 102, 41144119. [View Article][PubMed] [Google Scholar]
  6. Barro M., Patton J. T. (2007). Rotavirus NSP1 inhibits expression of type I interferon by antagonizing the function of interferon regulatory factors IRF3, IRF5, and IRF7. J Virol 81, 44734481. [View Article][PubMed] [Google Scholar]
  7. Bour S., Perrin C., Akari H., Strebel K. (2001). The human immunodeficiency virus type 1 Vpu protein inhibits NF-κ B activation by interfering with β TrCP-mediated degradation of Ikappa B. J Biol Chem 276, 1592015928. [View Article][PubMed] [Google Scholar]
  8. Broquet A. H., Hirata Y., McAllister C. S., Kagnoff M. F. (2011). RIG-I/MDA5/MAVS are required to signal a protective IFN response in rotavirus-infected intestinal epithelium. J Immunol 186, 16181626. [View Article][PubMed] [Google Scholar]
  9. Casola A., Estes M. K., Crawford S. E., Ogra P. L., Ernst P. B., Garofalo R. P., Crowe S. E. (1998). Rotavirus infection of cultured intestinal epithelial cells induces secretion of CXC and CC chemokines. Gastroenterology 114, 947955. [View Article][PubMed] [Google Scholar]
  10. Chevenet F., Brun C., Bañuls A. L., Jacq B., Christen R. (2006). TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7, 439. [View Article][PubMed] [Google Scholar]
  11. Coulson B. S., Kirkwood C. (1991). Relation of VP7 amino acid sequence to monoclonal antibody neutralization of rotavirus and rotavirus monotype. J Virol 65, 59685974.[PubMed] [Google Scholar]
  12. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J. F., Guindon S., Lefort V. et al. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36 (Web Server issue), W465W469. [View Article][PubMed] [Google Scholar]
  13. Dong H. J., Qian Y., Huang T., Zhu R. N., Zhao L. Q., Zhang Y., Li R. C., Li Y. P. (2013). Identification of circulating porcine-human reassortant G4P[6] rotavirus from children with acute diarrhea in China by whole genome analyses. Infect Genet Evol 20, 155162. [View Article][PubMed] [Google Scholar]
  14. Edgar R. C. (2004). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 17921797. [View Article][PubMed] [Google Scholar]
  15. Feng N., Yasukawa L. L., Sen A., Greenberg H. B. (2013). Permissive replication of homologous murine rotavirus in the mouse intestine is primarily regulated by VP4 and NSP1. J Virol 87, 83078316. [View Article][PubMed] [Google Scholar]
  16. Graff J. W., Mitzel D. N., Weisend C. M., Flenniken M. L., Hardy M. E. (2002). Interferon regulatory factor 3 is a cellular partner of rotavirus NSP1. J Virol 76, 95459550. [View Article][PubMed] [Google Scholar]
  17. Graff J. W., Ewen J., Ettayebi K., Hardy M. E. (2007). Zinc-binding domain of rotavirus NSP1 is required for proteasome-dependent degradation of IRF3 and autoregulatory NSP1 stability. J Gen Virol 88, 613620. [View Article][PubMed] [Google Scholar]
  18. Graff J. W., Ettayebi K., Hardy M. E. (2009). Rotavirus NSP1 inhibits NFkappaB activation by inducing proteasome-dependent degradation of β-TrCP: a novel mechanism of IFN antagonism. PLoS Pathog 5, e1000280. [View Article][PubMed] [Google Scholar]
  19. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59, 307321. [View Article][PubMed] [Google Scholar]
  20. Halasz P., Holloway G., Turner S. J., Coulson B. S. (2008). Rotavirus replication in intestinal cells differentially regulates integrin expression by a phosphatidylinositol 3-kinase-dependent pathway, resulting in increased cell adhesion and virus yield. J Virol 82, 148160. [View Article][PubMed] [Google Scholar]
  21. Harte M. T., Haga I. R., Maloney G., Gray P., Reading P. C., Bartlett N. W., Smith G. L., Bowie A., O’Neill L. A. (2003). The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 197, 343351. [View Article][PubMed] [Google Scholar]
  22. Holloway G., Coulson B. S. (2006). Rotavirus activates JNK and p38 signaling pathways in intestinal cells, leading to AP-1-driven transcriptional responses and enhanced virus replication. J Virol 80, 1062410633. [View Article][PubMed] [Google Scholar]
  23. Holloway G., Coulson B. S. (2013). Innate cellular responses to rotavirus infection. J Gen Virol 94, 11511160. [View Article][PubMed] [Google Scholar]
  24. Holloway G., Truong T. T., Coulson B. S. (2009). Rotavirus antagonizes cellular antiviral responses by inhibiting the nuclear accumulation of STAT1, STAT2, and NF-kappaB. J Virol 83, 49424951. [View Article][PubMed] [Google Scholar]
  25. Holloway G., Dang V. T., Jans D. A., Coulson B. S. (2014). Rotavirus inhibits IFN-induced STAT nuclear translocation by a mechanism that acts after STAT binding to importin-α. J Gen Virol 95, 17231733. [View Article][PubMed] [Google Scholar]
  26. Liang Q., Fu B., Wu F., Li X., Yuan Y., Zhu F. (2012). ORF45 of Kaposi’s sarcoma-associated herpesvirus inhibits phosphorylation of interferon regulatory factor 7 by IKKϵ and TBK1 as an alternative substrate. J Virol 86, 1016210172. [View Article][PubMed] [Google Scholar]
  27. Londrigan S. L., Hewish M. J., Thomson M. J., Sanders G. M., Mustafa H., Coulson B. S. (2000). Growth of rotaviruses in continuous human and monkey cell lines that vary in their expression of integrins. J Gen Virol 81, 22032213.[PubMed] [Google Scholar]
  28. Mansur D. S., Maluquer de Motes C., Unterholzner L., Sumner R. P., Ferguson B. J., Ren H., Strnadova P., Bowie A. G., Smith G. L. (2013). Poxvirus targeting of E3 ligase β-TrCP by molecular mimicry: a mechanism to inhibit NF-κB activation and promote immune evasion and virulence. PLoS Pathog 9, e1003183. [View Article][PubMed] [Google Scholar]
  29. Patton J. T., Taraporewala Z., Chen D., Chizhikov V., Jones M., Elhelu A., Collins M., Kearney K., Wagner M. et al. (2001). Effect of intragenic rearrangement and changes in the 3′ consensus sequence on NSP1 expression and rotavirus replication. J Virol 75, 20762086. [View Article][PubMed] [Google Scholar]
  30. Randall R. E., Goodbourn S. (2008). Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89, 147.[PubMed][CrossRef] [Google Scholar]
  31. Rollo E. E., Kumar K. P., Reich N. C., Cohen J., Angel J., Greenberg H. B., Sheth R., Anderson J., Oh B. et al. (1999). The epithelial cell response to rotavirus infection. J Immunol 163, 44424452.[PubMed] [Google Scholar]
  32. Sato T., Suzuki H., Kitaoka S., Konno T., Ishida N. (1986). Patterns of polypeptide synthesis in human rotavirus infected cells. Arch Virol 90, 2940. [View Article][PubMed] [Google Scholar]
  33. Sen A., Rott L., Phan N., Mukherjee G., Greenberg H. B. (2014). Rotavirus NSP1 protein inhibits interferon-mediated STAT1 activation. J Virol 88, 4153. [View Article][PubMed] [Google Scholar]
  34. Stadnyk A. W. (2002). Intestinal epithelial cells as a source of inflammatory cytokines and chemokines. Can J Gastroenterol 16, 241246.[PubMed] [Google Scholar]
  35. Theil K. W., Bohl E. H., Agnes A. G. (1977). Cell culture propagation of porcine rotavirus (reovirus-like agent). Am J Vet Res 38, 17651768.[PubMed] [Google Scholar]
  36. Wang X., Hussain S., Wang E. J., Wang X., Li M. O., García-Sastre A., Beg A. A. (2007). Lack of essential role of NF-κ B p50, RelA, and cRel subunits in virus-induced type 1 IFN expression. J Immunol 178, 67706776. [View Article][PubMed] [Google Scholar]
  37. Wang J., Basagoudanavar S. H., Wang X., Hopewell E., Albrecht R., García-Sastre A., Balachandran S., Beg A. A. (2010). NF-κB RelA subunit is crucial for early IFN-β expression and resistance to RNA virus replication. J Immunol 185, 17201729. [View Article][PubMed] [Google Scholar]
  38. Zhang R., Jha B. K., Ogden K. M., Dong B., Zhao L., Elliott R., Patton J. T., Silverman R. H., Weiss S. R. (2013). Homologous 2′,5′-phosphodiesterases from disparate RNA viruses antagonize antiviral innate immunity. Proc Natl Acad Sci U S A 110, 1311413119. [View Article][PubMed] [Google Scholar]
  39. Zhu F. X., King S. M., Smith E. J., Levy D. E., Yuan Y. (2002). A Kaposi’s sarcoma-associated herpesviral protein inhibits virus-mediated induction of type I interferon by blocking IRF-7 phosphorylation and nuclear accumulation. Proc Natl Acad Sci U S A 99, 55735578. [View Article][PubMed] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000093
Loading
/content/journal/jgv/10.1099/vir.0.000093
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error