1887

Abstract

Hepatitis C virus (HCV) infects the liver and hepatocytes are the major cell type supporting viral replication. Hepatocytes and cholangiocytes derive from a common hepatic progenitor cell that proliferates during inflammatory conditions, raising the possibility that cholangiocytes may support HCV replication and contribute to the hepatic reservoir. We screened cholangiocytes along with a panel of cholangiocarcinoma-derived cell lines for their ability to support HCV entry and replication. While primary cholangiocytes were refractory to infection and lacked expression of several entry factors, two cholangiocarcinoma lines, CC-LP-1 and Sk-ChA-1, supported efficient HCV entry; furthermore, Sk-ChA-1 cells supported full virus replication. cholangiocarcinomas expressed all of the essential HCV entry factors; however, cholangiocytes adjacent to the tumour and in normal tissue showed a similar pattern of receptor expression to isolated cholangiocytes, lacking SR-BI expression, explaining their inability to support infection. This study provides the first report that HCV can infect cholangiocarcinoma cells and suggests that these heterogeneous tumours may provide a reservoir for HCV replication .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000090
2015-06-01
2020-09-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/6/1380.html?itemId=/content/journal/jgv/10.1099/vir.0.000090&mimeType=html&fmt=ahah

References

  1. Da Costa D., Turek M., Felmlee D. J., Girardi E., Pfeffer S., Long G., Bartenschlager R., Zeisel M. B., Baumert T. F. 2012; Reconstitution of the entire hepatitis C virus life cycle in nonhepatic cells. J Virol 86:11919–11925 [CrossRef][PubMed]
    [Google Scholar]
  2. Dowd K. A., Netski D. M., Wang X. H., Cox A. L., Ray S. C. 2009; Selection pressure from neutralizing antibodies drives sequence evolution during acute infection with hepatitis C virus. Gastroenterology 136:2377–2386 [CrossRef][PubMed]
    [Google Scholar]
  3. Fan B., Malato Y., Calvisi D. F., Naqvi S., Razumilava N., Ribback S., Gores G. J., Dombrowski F., Evert M. et al. 2012; Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest 122:2911–2915 [CrossRef][PubMed]
    [Google Scholar]
  4. Farquhar M. J., McKeating J. A. 2008; Primary hepatocytes as targets for hepatitis C virus replication. J Viral Hepat 15:849–854 [CrossRef][PubMed]
    [Google Scholar]
  5. Fletcher N. F., Yang J. P., Farquhar M. J., Hu K., Davis C., He Q., Dowd K., Ray S. C., Krieger S. E. et al. 2010; Hepatitis C virus infection of neuroepithelioma cell lines. Gastroenterology 139:1365–1374, 1374.e2 [CrossRef][PubMed]
    [Google Scholar]
  6. Fletcher N. F., Wilson G. K., Murray J., Hu K., Lewis A., Reynolds G. M., Stamataki Z., Meredith L. W., Rowe I. A. et al. 2012; Hepatitis C virus infects the endothelial cells of the blood-brain barrier. Gastroenterology 142:634–643, e6 [CrossRef][PubMed]
    [Google Scholar]
  7. Flint M., von Hahn T., Zhang J., Farquhar M., Jones C. T., Balfe P., Rice C. M., McKeating J. A. 2006; Diverse CD81 proteins support hepatitis C virus infection. J Virol 80:11331–11342 [CrossRef][PubMed]
    [Google Scholar]
  8. Grubman S. A., Perrone R. D., Lee D. W., Murray S. L., Rogers L. C., Wolkoff L. I., Mulberg A. E., Cherington V., Jefferson D. M. 1994; Regulation of intracellular pH by immortalized human intrahepatic biliary epithelial cell lines. Am J Physiol 266:G1060–G1070[PubMed]
    [Google Scholar]
  9. Harris H. J., Davis C., Mullins J. G., Hu K., Goodall M., Farquhar M. J., Mee C. J., McCaffrey K., Young S. et al. 2010; Claudin association with CD81 defines hepatitis C virus entry. J Biol Chem 285:21092–21102 [CrossRef][PubMed]
    [Google Scholar]
  10. Hsu M., Zhang J., Flint M., Logvinoff C., Cheng-Mayer C., Rice C. M., McKeating J. A. 2003; Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci U S A 100:7271–7276 [CrossRef][PubMed]
    [Google Scholar]
  11. Hueging K., Doepke M., Vieyres G., Bankwitz D., Frentzen A., Doerrbecker J., Gumz F., Haid S., Wolk B. et al. 2014; Apolipoprotein E co-determines tissue-tropism of hepatitis C virus and it is crucial for viral cell-to-cell transmission by contributing to a post-envelopment step of assembly. J Virol 88:1433–1446 [CrossRef][PubMed]
    [Google Scholar]
  12. Israelow B., Narbus C. M., Sourisseau M., Evans M. J. 2014; HepG2 cells mount an effective antiviral interferon-lambda based innate immune response to hepatitis C virus infection. Hepatology 60:1170–1179 [CrossRef][PubMed]
    [Google Scholar]
  13. Iwai A., Takegami T., Shiozaki T., Miyazaki T. 2011; Hepatitis C virus NS3 protein can activate the Notch-signaling pathway through binding to a transcription factor, SRCAP. PLoS ONE 6:e20718 [CrossRef][PubMed]
    [Google Scholar]
  14. Jensen T. B., Gottwein J. M., Scheel T. K., Hoegh A. M., Eugen-Olsen J., Bukh J. 2008; Highly efficient JFH1-based cell-culture system for hepatitis C virus genotype 5a: failure of homologous neutralizing-antibody treatment to control infection. J Infect Dis 198:1756–1765 [CrossRef][PubMed]
    [Google Scholar]
  15. Jiang J., Luo G. 2009; Apolipoprotein E but not B is required for the formation of infectious hepatitis C virus particles. J Virol 83:12680–12691 [CrossRef][PubMed]
    [Google Scholar]
  16. Jopling C. L., Yi M., Lancaster A. M., Lemon S. M., Sarnow P. 2005; Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309:1577–1581 [CrossRef][PubMed]
    [Google Scholar]
  17. Kandathil A. J., Graw F., Quinn J., Hwang H. S., Torbenson M., Perelson A. S., Ray S. C., Thomas D. L., Ribeiro R. M., Balagopal A. 2013; Use of laser capture microdissection to map hepatitis C virus-positive hepatocytes in human liver. Gastroenterology 145:1404–, e1–e10 [CrossRef][PubMed]
    [Google Scholar]
  18. Knuth A., Gabbert H., Dippold W., Klein O., Sachsse W., Bitter-Suermann D., Prellwitz W., Meyer zum Büschenfelde K. H. 1985; Biliary adenocarcinoma. Characterisation of three new human tumor cell lines. J Hepatol 1:579–596 [CrossRef][PubMed]
    [Google Scholar]
  19. Komuta M., Govaere O., Vandecaveye V., Akiba J., Van Steenbergen W., Verslype C., Laleman W., Pirenne J., Aerts R. et al. 2012; Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatology 55:1876–1888 [CrossRef][PubMed]
    [Google Scholar]
  20. Lindenbach B. D., Evans M. J., Syder A. J., Wölk B., Tellinghuisen T. L., Liu C. C., Maruyama T., Hynes R. O., Burton D. R. et al. 2005; Complete replication of hepatitis C virus in cell culture. Science 309:623–626 [CrossRef][PubMed]
    [Google Scholar]
  21. Lu H., Ye M. Q., Thung S. N., Dash S., Gerber M. A. 2000; Detection of hepatitis C virus RNA sequences in cholangiocarcinomas in Chinese and American patients. Chin Med J (Engl) 113:1138–1141[PubMed]
    [Google Scholar]
  22. Lupberger J., Zeisel M. B., Xiao F., Thumann C., Fofana I., Zona L., Davis C., Mee C. J., Turek M. et al. 2011; EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med 17:589–595 [CrossRef][PubMed]
    [Google Scholar]
  23. Meertens L., Bertaux C., Cukierman L., Cormier E., Lavillette D., Cosset F. L., Dragic T. 2008; The tight junction proteins claudin-1, -6, and -9 are entry cofactors for hepatitis C virus. J Virol 82:3555–3560 [CrossRef][PubMed]
    [Google Scholar]
  24. Mitry R. R. 2009; Isolation of human hepatocytes. Methods Mol Biol 481:17–23 [CrossRef][PubMed]
    [Google Scholar]
  25. Osburn W. O., Snider A. E., Wells B. L., Latanich R., Bailey J. R., Thomas D. L., Cox A. L., Ray S. C. 2014; Clearance of hepatitis C infection is associated with the early appearance of broad neutralizing antibody responses. Hepatology 59:2140–2151 [CrossRef][PubMed]
    [Google Scholar]
  26. Patel T. 2006; Cholangiocarcinoma. Nat Clin Pract Gastroenterol Hepatol 3:33–42 [CrossRef][PubMed]
    [Google Scholar]
  27. Perumal V., Wang J., Thuluvath P., Choti M., Torbenson M. 2006; Hepatitis C and hepatitis B nucleic acids are present in intrahepatic cholangiocarcinomas from the United States. Hum Pathol 37:1211–1216 [CrossRef][PubMed]
    [Google Scholar]
  28. Ralphs S., Khan S. A. 2013; The role of the hepatitis viruses in cholangiocarcinoma. J Viral Hepat 20:297–305 [CrossRef][PubMed]
    [Google Scholar]
  29. Roskams T. 2006; Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene 25:3818–3822 [CrossRef][PubMed]
    [Google Scholar]
  30. Roskams T., van den Oord J. J., De Vos R., Desmet V. J. 1990; Neuroendocrine features of reactive bile ductules in cholestatic liver disease. Am J Pathol 137:1019–1025[PubMed]
    [Google Scholar]
  31. Sainz B. Jr, Barretto N., Martin D. N., Hiraga N., Imamura M., Hussain S., Marsh K. A., Yu X., Chayama K. et al. 2012; Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med 18:281–285 [CrossRef][PubMed]
    [Google Scholar]
  32. Scheel T. K., Rice C. M. 2013; Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med 19:837–849 [CrossRef][PubMed]
    [Google Scholar]
  33. Sekiya S., Suzuki A. 2012; Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. J Clin Invest 122:3914–3918 [CrossRef][PubMed]
    [Google Scholar]
  34. Shimizu T., Yokomuro S., Mizuguchi Y., Kawahigashi Y., Arima Y., Taniai N., Mamada Y., Yoshida H., Akimaru K., Tajiri T. 2006; Effect of transforming growth factor-beta1 on human intrahepatic cholangiocarcinoma cell growth. World J Gastroenterol 12:6316–6324[PubMed]
    [Google Scholar]
  35. Wang N., Liang Y., Devaraj S., Wang J., Lemon S. M., Li K. 2009; Toll-like receptor 3 mediates establishment of an antiviral state against hepatitis C virus in hepatoma cells. J Virol 83:9824–9834 [CrossRef][PubMed]
    [Google Scholar]
  36. Wieland S., Makowska Z., Campana B., Calabrese D., Dill M. T., Chung J., Chisari F. V., Heim M. H. 2014; Simultaneous detection of hepatitis C virus and interferon stimulated gene expression in infected human liver. Hepatology 59:2121–2130 [CrossRef][PubMed]
    [Google Scholar]
  37. Yin F., Chen B. 1998; Detection of hepatitis C virus RNA sequences in hepatic portal cholangiocarcinoma tissue by reverse transcription polymerase chain reaction. Chin Med J (Engl) 111:1068–1070[PubMed]
    [Google Scholar]
  38. Zheng A., Yuan F., Li Y., Zhu F., Hou P., Li J., Song X., Ding M., Deng H. 2007; Claudin-6 and claudin-9 function as additional coreceptors for hepatitis C virus. J Virol 81:12465–12471 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000090
Loading
/content/journal/jgv/10.1099/vir.0.000090
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error