1887

Abstract

Hepatitis C virus (HCV) infects the liver and hepatocytes are the major cell type supporting viral replication. Hepatocytes and cholangiocytes derive from a common hepatic progenitor cell that proliferates during inflammatory conditions, raising the possibility that cholangiocytes may support HCV replication and contribute to the hepatic reservoir. We screened cholangiocytes along with a panel of cholangiocarcinoma-derived cell lines for their ability to support HCV entry and replication. While primary cholangiocytes were refractory to infection and lacked expression of several entry factors, two cholangiocarcinoma lines, CC-LP-1 and Sk-ChA-1, supported efficient HCV entry; furthermore, Sk-ChA-1 cells supported full virus replication. cholangiocarcinomas expressed all of the essential HCV entry factors; however, cholangiocytes adjacent to the tumour and in normal tissue showed a similar pattern of receptor expression to isolated cholangiocytes, lacking SR-BI expression, explaining their inability to support infection. This study provides the first report that HCV can infect cholangiocarcinoma cells and suggests that these heterogeneous tumours may provide a reservoir for HCV replication .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000090
2015-06-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/6/1380.html?itemId=/content/journal/jgv/10.1099/vir.0.000090&mimeType=html&fmt=ahah

References

  1. Da Costa D., Turek M., Felmlee D. J., Girardi E., Pfeffer S., Long G., Bartenschlager R., Zeisel M. B., Baumert T. F.. ( 2012; ). Reconstitution of the entire hepatitis C virus life cycle in nonhepatic cells. . J Virol 86:, 11919–11925. [CrossRef] [PubMed]
    [Google Scholar]
  2. Dowd K. A., Netski D. M., Wang X. H., Cox A. L., Ray S. C.. ( 2009; ). Selection pressure from neutralizing antibodies drives sequence evolution during acute infection with hepatitis C virus. . Gastroenterology 136:, 2377–2386. [CrossRef] [PubMed]
    [Google Scholar]
  3. Fan B., Malato Y., Calvisi D. F., Naqvi S., Razumilava N., Ribback S., Gores G. J., Dombrowski F., Evert M. et al. ( 2012; ). Cholangiocarcinomas can originate from hepatocytes in mice. . J Clin Invest 122:, 2911–2915. [CrossRef] [PubMed]
    [Google Scholar]
  4. Farquhar M. J., McKeating J. A.. ( 2008; ). Primary hepatocytes as targets for hepatitis C virus replication. . J Viral Hepat 15:, 849–854. [CrossRef] [PubMed]
    [Google Scholar]
  5. Fletcher N. F., Yang J. P., Farquhar M. J., Hu K., Davis C., He Q., Dowd K., Ray S. C., Krieger S. E. et al. ( 2010; ). Hepatitis C virus infection of neuroepithelioma cell lines. . Gastroenterology 139:, 1365–1374, 1374.e2. [CrossRef] [PubMed]
    [Google Scholar]
  6. Fletcher N. F., Wilson G. K., Murray J., Hu K., Lewis A., Reynolds G. M., Stamataki Z., Meredith L. W., Rowe I. A. et al. ( 2012; ). Hepatitis C virus infects the endothelial cells of the blood-brain barrier. . Gastroenterology 142:, 634–643, e6. [CrossRef] [PubMed]
    [Google Scholar]
  7. Flint M., von Hahn T., Zhang J., Farquhar M., Jones C. T., Balfe P., Rice C. M., McKeating J. A.. ( 2006; ). Diverse CD81 proteins support hepatitis C virus infection. . J Virol 80:, 11331–11342. [CrossRef] [PubMed]
    [Google Scholar]
  8. Grubman S. A., Perrone R. D., Lee D. W., Murray S. L., Rogers L. C., Wolkoff L. I., Mulberg A. E., Cherington V., Jefferson D. M.. ( 1994; ). Regulation of intracellular pH by immortalized human intrahepatic biliary epithelial cell lines. . Am J Physiol 266:, G1060–G1070.[PubMed]
    [Google Scholar]
  9. Harris H. J., Davis C., Mullins J. G., Hu K., Goodall M., Farquhar M. J., Mee C. J., McCaffrey K., Young S. et al. ( 2010; ). Claudin association with CD81 defines hepatitis C virus entry. . J Biol Chem 285:, 21092–21102. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hsu M., Zhang J., Flint M., Logvinoff C., Cheng-Mayer C., Rice C. M., McKeating J. A.. ( 2003; ). Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. . Proc Natl Acad Sci U S A 100:, 7271–7276. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hueging K., Doepke M., Vieyres G., Bankwitz D., Frentzen A., Doerrbecker J., Gumz F., Haid S., Wolk B. et al. ( 2014; ). Apolipoprotein E co-determines tissue-tropism of hepatitis C virus and it is crucial for viral cell-to-cell transmission by contributing to a post-envelopment step of assembly. . J Virol 88:, 1433–1446. [CrossRef] [PubMed]
    [Google Scholar]
  12. Israelow B., Narbus C. M., Sourisseau M., Evans M. J.. ( 2014; ). HepG2 cells mount an effective antiviral interferon-lambda based innate immune response to hepatitis C virus infection. . Hepatology 60:, 1170–1179. [CrossRef] [PubMed]
    [Google Scholar]
  13. Iwai A., Takegami T., Shiozaki T., Miyazaki T.. ( 2011; ). Hepatitis C virus NS3 protein can activate the Notch-signaling pathway through binding to a transcription factor, SRCAP. . PLoS ONE 6:, e20718. [CrossRef] [PubMed]
    [Google Scholar]
  14. Jensen T. B., Gottwein J. M., Scheel T. K., Hoegh A. M., Eugen-Olsen J., Bukh J.. ( 2008; ). Highly efficient JFH1-based cell-culture system for hepatitis C virus genotype 5a: failure of homologous neutralizing-antibody treatment to control infection. . J Infect Dis 198:, 1756–1765. [CrossRef] [PubMed]
    [Google Scholar]
  15. Jiang J., Luo G.. ( 2009; ). Apolipoprotein E but not B is required for the formation of infectious hepatitis C virus particles. . J Virol 83:, 12680–12691. [CrossRef] [PubMed]
    [Google Scholar]
  16. Jopling C. L., Yi M., Lancaster A. M., Lemon S. M., Sarnow P.. ( 2005; ). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. . Science 309:, 1577–1581. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kandathil A. J., Graw F., Quinn J., Hwang H. S., Torbenson M., Perelson A. S., Ray S. C., Thomas D. L., Ribeiro R. M., Balagopal A.. ( 2013; ). Use of laser capture microdissection to map hepatitis C virus-positive hepatocytes in human liver. . Gastroenterology 145:, 1404– , e1–e10. [CrossRef] [PubMed]
    [Google Scholar]
  18. Knuth A., Gabbert H., Dippold W., Klein O., Sachsse W., Bitter-Suermann D., Prellwitz W., Meyer zum Büschenfelde K. H.. ( 1985; ). Biliary adenocarcinoma. Characterisation of three new human tumor cell lines. . J Hepatol 1:, 579–596. [CrossRef] [PubMed]
    [Google Scholar]
  19. Komuta M., Govaere O., Vandecaveye V., Akiba J., Van Steenbergen W., Verslype C., Laleman W., Pirenne J., Aerts R. et al. ( 2012; ). Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. . Hepatology 55:, 1876–1888. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lindenbach B. D., Evans M. J., Syder A. J., Wölk B., Tellinghuisen T. L., Liu C. C., Maruyama T., Hynes R. O., Burton D. R. et al. ( 2005; ). Complete replication of hepatitis C virus in cell culture. . Science 309:, 623–626. [CrossRef] [PubMed]
    [Google Scholar]
  21. Lu H., Ye M. Q., Thung S. N., Dash S., Gerber M. A.. ( 2000; ). Detection of hepatitis C virus RNA sequences in cholangiocarcinomas in Chinese and American patients. . Chin Med J (Engl) 113:, 1138–1141.[PubMed]
    [Google Scholar]
  22. Lupberger J., Zeisel M. B., Xiao F., Thumann C., Fofana I., Zona L., Davis C., Mee C. J., Turek M. et al. ( 2011; ). EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. . Nat Med 17:, 589–595. [CrossRef] [PubMed]
    [Google Scholar]
  23. Meertens L., Bertaux C., Cukierman L., Cormier E., Lavillette D., Cosset F. L., Dragic T.. ( 2008; ). The tight junction proteins claudin-1, -6, and -9 are entry cofactors for hepatitis C virus. . J Virol 82:, 3555–3560. [CrossRef] [PubMed]
    [Google Scholar]
  24. Mitry R. R.. ( 2009; ). Isolation of human hepatocytes. . Methods Mol Biol 481:, 17–23. [CrossRef] [PubMed]
    [Google Scholar]
  25. Osburn W. O., Snider A. E., Wells B. L., Latanich R., Bailey J. R., Thomas D. L., Cox A. L., Ray S. C.. ( 2014; ). Clearance of hepatitis C infection is associated with the early appearance of broad neutralizing antibody responses. . Hepatology 59:, 2140–2151. [CrossRef] [PubMed]
    [Google Scholar]
  26. Patel T.. ( 2006; ). Cholangiocarcinoma. . Nat Clin Pract Gastroenterol Hepatol 3:, 33–42. [CrossRef] [PubMed]
    [Google Scholar]
  27. Perumal V., Wang J., Thuluvath P., Choti M., Torbenson M.. ( 2006; ). Hepatitis C and hepatitis B nucleic acids are present in intrahepatic cholangiocarcinomas from the United States. . Hum Pathol 37:, 1211–1216. [CrossRef] [PubMed]
    [Google Scholar]
  28. Ralphs S., Khan S. A.. ( 2013; ). The role of the hepatitis viruses in cholangiocarcinoma. . J Viral Hepat 20:, 297–305. [CrossRef] [PubMed]
    [Google Scholar]
  29. Roskams T.. ( 2006; ). Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. . Oncogene 25:, 3818–3822. [CrossRef] [PubMed]
    [Google Scholar]
  30. Roskams T., van den Oord J. J., De Vos R., Desmet V. J.. ( 1990; ). Neuroendocrine features of reactive bile ductules in cholestatic liver disease. . Am J Pathol 137:, 1019–1025.[PubMed]
    [Google Scholar]
  31. Sainz B. Jr, Barretto N., Martin D. N., Hiraga N., Imamura M., Hussain S., Marsh K. A., Yu X., Chayama K. et al. ( 2012; ). Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. . Nat Med 18:, 281–285. [CrossRef] [PubMed]
    [Google Scholar]
  32. Scheel T. K., Rice C. M.. ( 2013; ). Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. . Nat Med 19:, 837–849. [CrossRef] [PubMed]
    [Google Scholar]
  33. Sekiya S., Suzuki A.. ( 2012; ). Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. . J Clin Invest 122:, 3914–3918. [CrossRef] [PubMed]
    [Google Scholar]
  34. Shimizu T., Yokomuro S., Mizuguchi Y., Kawahigashi Y., Arima Y., Taniai N., Mamada Y., Yoshida H., Akimaru K., Tajiri T.. ( 2006; ). Effect of transforming growth factor-beta1 on human intrahepatic cholangiocarcinoma cell growth. . World J Gastroenterol 12:, 6316–6324.[PubMed]
    [Google Scholar]
  35. Wang N., Liang Y., Devaraj S., Wang J., Lemon S. M., Li K.. ( 2009; ). Toll-like receptor 3 mediates establishment of an antiviral state against hepatitis C virus in hepatoma cells. . J Virol 83:, 9824–9834. [CrossRef] [PubMed]
    [Google Scholar]
  36. Wieland S., Makowska Z., Campana B., Calabrese D., Dill M. T., Chung J., Chisari F. V., Heim M. H.. ( 2014; ). Simultaneous detection of hepatitis C virus and interferon stimulated gene expression in infected human liver. . Hepatology 59:, 2121–2130. [CrossRef] [PubMed]
    [Google Scholar]
  37. Yin F., Chen B.. ( 1998; ). Detection of hepatitis C virus RNA sequences in hepatic portal cholangiocarcinoma tissue by reverse transcription polymerase chain reaction. . Chin Med J (Engl) 111:, 1068–1070.[PubMed]
    [Google Scholar]
  38. Zheng A., Yuan F., Li Y., Zhu F., Hou P., Li J., Song X., Ding M., Deng H.. ( 2007; ). Claudin-6 and claudin-9 function as additional coreceptors for hepatitis C virus. . J Virol 81:, 12465–12471. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000090
Loading
/content/journal/jgv/10.1099/vir.0.000090
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error