1887

Abstract

West Nile virus (WNV), an important global human pathogen, targets neurons to cause lethal encephalitis, primarily in elderly and immunocompromised patients. Currently, there are no approved therapeutic agents or vaccines to treat WNV encephalitis. Recent studies have suggested that inflammation is a major contributor to WNV encephalitis morbidity. In this study we evaluated the use of IVIG (intravenous immunoglobulins – a clinical product comprising pooled human IgG) as an anti-inflammatory treatment in a model of lethal WNV infection. We report here that IVIG and pooled human WNV convalescent sera (WNV-IVIG) inhibited development of lethal WNV encephalitis by suppressing central nervous system (CNS) infiltration by CD45 leukocytes. Pathogenic Ly6C CD11b monocytes were the major infiltrating subset in the CNS of infected control mice, whereas IVIG profoundly reduced infiltration of these pathogenic Ly6C monocytes into the CNS of infected mice. Interestingly, WNV-IVIG was more efficacious than IVIG in controlling CNS inflammation when mice were challenged with a high-dose inoculum (10 versus 10 p.f.u.) of WNV. Importantly, adsorption of WNV E-glycoprotein neutralizing antibodies did not abrogate IVIG protection, consistent with virus neutralization not being essential for IVIG protection. These findings confirmed the potent immunomodulatory activity of generic IVIG, and emphasized its potential as an effective immunotherapeutic drug for encephalitis and other virus induced inflammatory diseases.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000079
2015-06-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/6/1347.html?itemId=/content/journal/jgv/10.1099/vir.0.000079&mimeType=html&fmt=ahah

References

  1. Agrawal A. G., Petersen L. R.. ( 2003; ). Human immunoglobulin as a treatment for West Nile virus infection. . J Infect Dis 188:, 1–4. [CrossRef] [PubMed]
    [Google Scholar]
  2. Anderson J. F., Rahal J. J.. ( 2002; ). Efficacy of interferon alpha-2b and ribavirin against West Nile virus in vitro. . Emerg Infect Dis 8:, 107–108. [CrossRef] [PubMed]
    [Google Scholar]
  3. Anthony R. M., Ravetch J. V.. ( 2010; ). A novel role for the IgG Fc glycan: the anti-inflammatory activity of sialylated IgG Fcs. . J Clin Immunol 30: (Suppl 1), S9–S14. [CrossRef] [PubMed]
    [Google Scholar]
  4. Anthony R. M., Nimmerjahn F., Ashline D. J., Reinhold V. N., Paulson J. C., Ravetch J. V.. ( 2008; ). Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. . Science 320:, 373–376. [CrossRef] [PubMed]
    [Google Scholar]
  5. Anthony R. M., Kobayashi T., Wermeling F., Ravetch J. V.. ( 2011; ). Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. . Nature 475:, 110–113. [CrossRef] [PubMed]
    [Google Scholar]
  6. Ben-Nathan D., Lustig S., Tam G., Robinzon S., Segal S., Rager-Zisman B.. ( 2003; ). Prophylactic and therapeutic efficacy of human intravenous immunoglobulin in treating West Nile virus infection in mice. . J Infect Dis 188:, 5–12. [CrossRef] [PubMed]
    [Google Scholar]
  7. Ben-Nathan D., Gershoni-Yahalom O., Samina I., Khinich Y., Nur I., Laub O., Gottreich A., Simanov M., Porgador A. et al. ( 2009; ). Using high titer West Nile intravenous immunoglobulin from selected Israeli donors for treatment of West Nile virus infection. . BMC Infect Dis 9:, 18. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chan-Tack K. M., Forrest G.. ( 2005; ). Failure of interferon alpha-2b in a patient with West Nile virus meningoencephalitis and acute flaccid paralysis. . Scand J Infect Dis 37:, 944–946. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chung K. M., Nybakken G. E., Thompson B. S., Engle M. J., Marri A., Fremont D. H., Diamond M. S.. ( 2006; ). Antibodies against West Nile Virus nonstructural protein NS1 prevent lethal infection through Fc gamma receptor-dependent and -independent mechanisms. . J Virol 80:, 1340–1351. [CrossRef] [PubMed]
    [Google Scholar]
  10. Cohen J.. ( 1988; ). Intravenous immunoglobulin (IVIG) for Gram-negative infection – a critical review. . J Hosp Infect 12: (Suppl D), 47–54. [CrossRef] [PubMed]
    [Google Scholar]
  11. Davis C. W., Nguyen H.-Y., Hanna S. L., Sánchez M. D., Doms R. W., Pierson T. C.. ( 2006; ). West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. . J Virol 80:, 1290–1301. [CrossRef] [PubMed]
    [Google Scholar]
  12. Diamond M. S.. ( 2005; ). Development of effective therapies against West Nile virus infection. . Expert Rev Anti Infect Ther 3:, 931–944. [CrossRef] [PubMed]
    [Google Scholar]
  13. Diamond M. S., Shrestha B., Marri A., Mahan D., Engle M.. ( 2003; ). B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. . J Virol 77:, 2578–2586. [CrossRef] [PubMed]
    [Google Scholar]
  14. Engle M. J., Diamond M. S.. ( 2003; ). Antibody prophylaxis and therapy against West Nile virus infection in wild-type and immunodeficient mice. . J Virol 77:, 12941–12949. [CrossRef] [PubMed]
    [Google Scholar]
  15. Getts D. R., Terry R. L., Getts M. T., Müller M., Rana S., Shrestha B., Radford J., Van Rooijen N., Campbell I. L., King N. J.. ( 2008; ). Ly6c+ “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. . J Exp Med 205:, 2319–2337. [CrossRef] [PubMed]
    [Google Scholar]
  16. Hayes E. B., Gubler D. J.. ( 2006; ). West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States. . Annu Rev Med 57:, 181–194. [CrossRef] [PubMed]
    [Google Scholar]
  17. King, N., Vreden, C. V., Terry, R. L. & Getts, D. R. (2011). The immunopathogenesis of neurotropic flavivirus infection. In Flavivirus Encephalitis. Edited by D. Růžek. Prague: InTech. http://www.intechopen.com/books/flavivirus-encephalitis/the-immunopathogenesis-of-neurotropic-flavivirus-infection.
  18. Kumar D., Prasad G. V., Zaltzman J., Levy G. A., Humar A.. ( 2004; ). Community-acquired West Nile virus infection in solid-organ transplant recipients. . Transplantation 77:, 399–402. [CrossRef] [PubMed]
    [Google Scholar]
  19. Looney R. J., Huggins J.. ( 2006; ). Use of intravenous immunoglobulin G (IVIG). . Best Pract Res Clin Haematol 19:, 3–25. [CrossRef] [PubMed]
    [Google Scholar]
  20. Makhoul B., Braun E., Herskovitz M., Ramadan R., Hadad S., Norberto K.. ( 2009; ). Hyperimmune gammaglobulin for the treatment of West Nile virus encephalitis. . Isr Med Assoc J 11:, 151–153.[PubMed]
    [Google Scholar]
  21. Mehlhop E., Whitby K., Oliphant T., Marri A., Engle M., Diamond M. S.. ( 2005; ). Complement activation is required for induction of a protective antibody response against West Nile virus infection. . J Virol 79:, 7466–7477. [CrossRef] [PubMed]
    [Google Scholar]
  22. Morelli M. C., Sambri V., Grazi G. L., Gaibani P., Pierro A., Cescon M., Ercolani G., Cavrini F., Rossini G. et al. ( 2010; ). Absence of neuroinvasive disease in a liver transplant recipient who acquired West Nile virus (WNV) infection from the organ donor and who received WNV antibodies prophylactically. . Clin Infect Dis 51:, e34–e37. [CrossRef] [PubMed]
    [Google Scholar]
  23. Morrey J. D., Siddharthan V., Olsen A. L., Roper G. Y., Wang H., Baldwin T. J., Koenig S., Johnson S., Nordstrom J. L., Diamond M. S.. ( 2006; ). Humanized monoclonal antibody against West Nile virus envelope protein administered after neuronal infection protects against lethal encephalitis in hamsters. . J Infect Dis 194:, 1300–1308. [CrossRef] [PubMed]
    [Google Scholar]
  24. Murray K., Baraniuk S., Resnick M., Arafat R., Kilborn C., Cain K., Shallenberger R., York T. L., Martinez D. et al. ( 2006; ). Risk factors for encephalitis and death from West Nile virus infection. . Epidemiol Infect 134:, 1325–1332. [CrossRef] [PubMed]
    [Google Scholar]
  25. Nash D., Mostashari F., Fine A., Miller J., O’Leary D., Murray K., Huang A., Rosenberg A., Greenberg A. et al. ( 2001; ). The outbreak of West Nile virus infection in the New York City area in 1999. . N Engl J Med 344:, 1807–1814. [CrossRef] [PubMed]
    [Google Scholar]
  26. Negi V.-S., Elluru S., Sibéril S., Graff-Dubois S., Mouthon L., Kazatchkine M. D., Lacroix-Desmazes S., Bayry J., Kaveri S. V.. ( 2007; ). Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. . J Clin Immunol 27:, 233–245. [CrossRef] [PubMed]
    [Google Scholar]
  27. Oliphant T., Nybakken G. E., Engle M., Xu Q., Nelson C. A., Sukupolvi-Petty S., Marri A., Lachmi B.-E., Olshevsky U. et al. ( 2006; ). Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein. . J Virol 80:, 12149–12159. [CrossRef] [PubMed]
    [Google Scholar]
  28. Oliphant T., Nybakken G. E., Austin S. K., Xu Q., Bramson J., Loeb M., Throsby M., Fremont D. H., Pierson T. C., Diamond M. S.. ( 2007; ). Induction of epitope-specific neutralizing antibodies against West Nile virus. . J Virol 81:, 11828–11839. [CrossRef] [PubMed]
    [Google Scholar]
  29. Pauli G., Bauerfeind U., Blümel J., Burger R., Drosten C., Gröner A., Gürtler L., Heiden M., Hildebrandt M. et al. ( 2013; ). West Nile virus. . Transfus Med Hemother 40:, 265–284.[PubMed]
    [Google Scholar]
  30. Petersen L. R., Marfin A. A.. ( 2002; ). West Nile virus: a primer for the clinician. . Ann Intern Med 137:, 173–179. [CrossRef] [PubMed]
    [Google Scholar]
  31. Planitzer C. B., Modrof J., Kreil T. R.. ( 2007; ). West Nile virus neutralization by US plasma-derived immunoglobulin products. . J Infect Dis 196:, 435–440. [CrossRef] [PubMed]
    [Google Scholar]
  32. Ramakrishna C., Newo A. N. S., Shen Y.-W., Cantin E.. ( 2011; ). Passively administered pooled human immunoglobulins exert IL-10 dependent anti-inflammatory effects that protect against fatal HSV encephalitis. . PLoS Pathog 7:, e1002071. [CrossRef] [PubMed]
    [Google Scholar]
  33. Rhee C., Eaton E. F., Concepcion W., Blackburn B. G.. ( 2011; ). West Nile virus encephalitis acquired via liver transplantation and clinical response to intravenous immunoglobulin: case report and review of the literature. . Transpl Infect Dis 13:, 312–317. [CrossRef] [PubMed]
    [Google Scholar]
  34. Samuel M. A., Diamond M. S.. ( 2006; ). Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. . J Virol 80:, 9349–9360. [CrossRef] [PubMed]
    [Google Scholar]
  35. Saquib R., Randall H., Chandrakantan A., Spak C. W., Barri Y. M.. ( 2008; ). West Nile virus encephalitis in a renal transplant recipient: the role of intravenous immunoglobulin. . Am J Kidney Dis 52:, e19–e21. [CrossRef] [PubMed]
    [Google Scholar]
  36. Schwab I., Nimmerjahn F.. ( 2013; ). Intravenous immunoglobulin therapy: how does IgG modulate the immune system?. Nat Rev Immunol 13:, 176–189. [CrossRef] [PubMed]
    [Google Scholar]
  37. Sharma M., Schoindre Y., Hegde P., Saha C., Maddur M. S., Stephen-Victor E., Gilardin L., Lecerf M., Bruneval P. et al. ( 2014; ). Intravenous immunoglobulin-induced IL-33 is insufficient to mediate basophil expansion in autoimmune patients. . Sci Rep 4:, 5672. [CrossRef] [PubMed]
    [Google Scholar]
  38. Shimoni Z., Bin H., Bulvik S., Niven M., Hazzan R., Mendelson E., Froom P.. ( 2012; ). The clinical response of West Nile virus neuroinvasive disease to intravenous immunoglobulin therapy. . Clin Pract 2:, e18. [CrossRef] [PubMed]
    [Google Scholar]
  39. Suthar M. S., Diamond M. S., Gale M. Jr. ( 2013; ). West Nile virus infection and immunity. . Nat Rev Microbiol 11:, 115–128. [CrossRef] [PubMed]
    [Google Scholar]
  40. Terry R. L., Getts D. R., Deffrasnes C., van Vreden C., Campbell I. L., King N. J.. ( 2012; ). Inflammatory monocytes and the pathogenesis of viral encephalitis. . J Neuroinflammation 9:, 270. [CrossRef] [PubMed]
    [Google Scholar]
  41. Tyler K. L.. ( 2001; ). West Nile virus encephalitis in America. . N Engl J Med 344:, 1858–1859. [CrossRef] [PubMed]
    [Google Scholar]
  42. Vogt M. R., Dowd K. A., Engle M., Tesh R. B., Johnson S., Pierson T. C., Diamond M. S.. ( 2011; ). Poorly neutralizing cross-reactive antibodies against the fusion loop of West Nile virus envelope protein protect in vivo via Fcgamma receptor and complement-dependent effector mechanisms. . J Virol 85:, 11567–11580. [CrossRef] [PubMed]
    [Google Scholar]
  43. von Gunten S., Shoenfeld Y., Blank M., Branch D. R., Vassilev T., Käsermann F., Bayry J., Kaveri S., Simon H.-U.. ( 2014; ). IVIG pluripotency and the concept of Fc-sialylation: challenges to the scientist. . Nat Rev Immunol 14:, 349. [CrossRef] [PubMed]
    [Google Scholar]
  44. Wadei H., Alangaden G. J., Sillix D. H., El-Amm J. M., Gruber S. A., West M. S., Granger D. K., Garnick J., Chandrasekar P. et al. ( 2004; ). West Nile virus encephalitis: an emerging disease in renal transplant recipients. . Clin Transplant 18:, 753–758. [CrossRef] [PubMed]
    [Google Scholar]
  45. Wang, T., Welte, T., Saxena, V. & Xie, G. (2011). Immunity versus immunopathology in West Nile virus induced encephalitis. In Flavivirus Encephalitis. Edited by D. Růžek. Prague: InTech. http://www.intechopen.com/books/flavivirus-encephalitis/immunity-versus-immunopathology-in-west-nile-virus-induced-encephalitis.
  46. Yango A. F., Fischbach B. V., Levy M., Chandrakantan A., Tan V., Spak C., Melton L., Rice K., Barri Y. et al. ( 2014; ). West Nile virus infection in kidney and pancreas transplant recipients in the Dallas-Fort Worth Metroplex during the 2012 Texas epidemic. . Transplantation 97:, 953–957.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000079
Loading
/content/journal/jgv/10.1099/vir.0.000079
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error