1887

Abstract

The viral tegument is a layer of proteins between the herpesvirus capsid and its outer envelope. According to phylogenetic studies, only a third of these proteins are conserved amongst the three subfamilies (-, - and ) of the family . Although some of these tegument proteins have been studied in more detail, the structure and function of the majority of them are still poorly characterized. VP22 from (subfamily ) is a highly interacting tegument protein that has been associated with tegument assembly. We have determined the crystal structure of the conserved core domain of VP22, which reveals an elongated dimer with several potential protein–protein interaction regions and a peptide-binding site. The structure provides us with the structural basics to understand the numerous functional mutagenesis studies of VP22 found in the literature. It also establishes an unexpected structural homology to the tegument protein ORF52 from (subfamily ). Homologues for both VP22 and ORF52 have been identified in their respective subfamilies. Although there is no obvious sequence overlap in the two subfamilies, this structural conservation provides compelling structural evidence for shared ancestry and functional conservation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000078
2015-06-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/6/1436.html?itemId=/content/journal/jgv/10.1099/vir.0.000078&mimeType=html&fmt=ahah

References

  1. Adams P. D., Afonine P. V., Bunkóczi G., Chen V. B., Davis I. W., Echols N., Headd J. J., Hung L.-W., Kapral G. J. et al. ( 2010; ). phenix: a comprehensive Python-based system for macromolecular structure solution. . Acta Crystallogr D Biol Crystallogr 66:, 213–221. [CrossRef] [PubMed]
    [Google Scholar]
  2. Albiston A. L., Pham V., Ye S., Ng L., Lew R. A., Thompson P. E., Holien J. K., Morton C. J., Parker M. W., Chai S. Y.. ( 2010; ). Phenylalanine-544 plays a key role in substrate and inhibitor binding by providing a hydrophobic packing point at the active site of insulin-regulated aminopeptidase. . Mol Pharmacol 78:, 600–607. [CrossRef] [PubMed]
    [Google Scholar]
  3. Antman K., Chang Y.. ( 2000; ). Kaposi’s sarcoma. . N Engl J Med 342:, 1027–1038. [CrossRef] [PubMed]
    [Google Scholar]
  4. Baker N. A., Sept D., Joseph S., Holst M. J., McCammon J. A.. ( 2001; ). Electrostatics of nanosystems: application to microtubules and the ribosome. . Proc Natl Acad Sci U S A 98:, 10037–10041. [CrossRef] [PubMed]
    [Google Scholar]
  5. Benach J., Wang L., Chen Y., Ho C. K., Lee S., Seetharaman J., Xiao R., Acton T. B., Montelione G. T. et al. ( 2007; ). Structural and functional studies of the abundant tegument protein ORF52 from murine gammaherpesvirus 68. . J Biol Chem 282:, 31534–31541. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bennett R. P., Dalby B., Guy P. M.. ( 2002; ). Protein delivery using VP22. . Nat Biotechnol 20:, 20. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bortz E., Wang L., Jia Q., Wu T. T., Whitelegge J. P., Deng H., Zhou Z. H., Sun R.. ( 2007; ). Murine gammaherpesvirus 68 ORF52 encodes a tegument protein required for virion morphogenesis in the cytoplasm. . J Virol 81:, 10137–10150. [CrossRef] [PubMed]
    [Google Scholar]
  8. Brignati M. J., Loomis J. S., Wills J. W., Courtney R. J.. ( 2003; ). Membrane association of VP22, a herpes simplex virus type 1 tegument protein. . J Virol 77:, 4888–4898. [CrossRef] [PubMed]
    [Google Scholar]
  9. Cao L., Bandelac G., Volgina A., Korostoff J., DiRienzo J. M.. ( 2008; ). Role of aromatic amino acids in receptor binding activity and subunit assembly of the cytolethal distending toxin of Aggregatibacter actinomycetemcomitans. . Infect Immun 76:, 2812–2821. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chi J. H., Harley C. A., Mukhopadhyay A., Wilson D. W.. ( 2005; ). The cytoplasmic tail of herpes simplex virus envelope glycoprotein D binds to the tegument protein VP22 and to capsids. . J Gen Virol 86:, 253–261. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chouljenko D. V., Kim I. J., Chouljenko V. N., Subramanian R., Walker J. D., Kousoulas K. G.. ( 2012; ). Functional hierarchy of herpes simplex virus 1 viral glycoproteins in cytoplasmic virion envelopment and egress. . J Virol 86:, 4262–4270. [CrossRef] [PubMed]
    [Google Scholar]
  12. Cole C., Barber J. D., Barton G. J.. ( 2008; ). The Jpred 3 secondary structure prediction server. . Nucleic Acids Res 36: (Web Server issue), W197–W201. [CrossRef] [PubMed]
    [Google Scholar]
  13. Davison A. J.. ( 2007; ). Overview of classification. . In Human Herpesviruses: Biology, Therapy and Immunoprophylaxis, pp. 3–9. Edited by Arvin A., Campadelli-Fiume G., Mocarski E., Moore P. S., Roziman B., Whitley R., Yamanishi K... Cambridge:: Cambridge University Press;.
    [Google Scholar]
  14. Dolinsky T. J., Nielsen J. E., McCammon J. A., Baker N. A.. ( 2004; ). pdb2pqr: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. . Nucleic Acids Res 32: (Web Server issue), W665–W667. [CrossRef] [PubMed]
    [Google Scholar]
  15. Elliott G. D., Meredith D. M.. ( 1992; ). The herpes simplex virus type 1 tegument protein VP22 is encoded by gene UL49. . J Gen Virol 73:, 723–726. [CrossRef] [PubMed]
    [Google Scholar]
  16. Elliott G., O’Hare P.. ( 1998; ). Herpes simplex virus type 1 tegument protein VP22 induces the stabilization and hyperacetylation of microtubules. . J Virol 72:, 6448–6455.[PubMed]
    [Google Scholar]
  17. Elliott G., O’Hare P.. ( 1999; ). Intercellular trafficking of VP22-GFP fusion proteins. . Gene Ther 6:, 149–151. [CrossRef] [PubMed]
    [Google Scholar]
  18. Elliott G., Mouzakitis G., O’Hare P.. ( 1995; ). VP16 interacts via its activation domain with VP22, a tegument protein of herpes simplex virus, and is relocated to a novel macromolecular assembly in coexpressing cells. . J Virol 69:, 7932–7941.[PubMed]
    [Google Scholar]
  19. Elliott G., Hafezi W., Whiteley A., Bernard E.. ( 2005; ). Deletion of the herpes simplex virus VP22-encoding gene (UL49) alters the expression, localization, and virion incorporation of ICP0. . J Virol 79:, 9735–9745. [CrossRef] [PubMed]
    [Google Scholar]
  20. Emsley P., Lohkamp B., Scott W. G., Cowtan K.. ( 2010; ). Features and development of Coot. . Acta Crystallogr D Biol Crystallogr 66:, 486–501. [CrossRef] [PubMed]
    [Google Scholar]
  21. Farnsworth A., Wisner T. W., Johnson D. C.. ( 2007; ). Cytoplasmic residues of herpes simplex virus glycoprotein gE required for secondary envelopment and binding of tegument proteins VP22 and UL11 to gE and gD. . J Virol 81:, 319–331. [CrossRef] [PubMed]
    [Google Scholar]
  22. Ferrandon S., Sterzenbach T., Mersha F. B., Xu M.-Q.. ( 2003; ). A single surface tryptophan in the chitin-binding domain from Bacillus circulans chitinase A1 plays a pivotal role in binding chitin and can be modified to create an elutable affinity tag. . Biochim Biophys Acta 1621:, 31–40. [CrossRef] [PubMed]
    [Google Scholar]
  23. Fossum E., Friedel C. C., Rajagopala S. V., Titz B., Baiker A., Schmidt T., Kraus T., Stellberger T., Rutenberg C. et al. ( 2009; ). Evolutionarily conserved herpesviral protein interaction networks. . PLoS Pathog 5:, e1000570. [CrossRef] [PubMed]
    [Google Scholar]
  24. Guo H., Shen S., Wang L., Deng H.. ( 2010; ). Role of tegument proteins in herpesvirus assembly and egress. . Protein Cell 1:, 987–998. [CrossRef] [PubMed]
    [Google Scholar]
  25. Hafezi W., Bernard E., Cook R., Elliott G.. ( 2005; ). Herpes simplex virus tegument protein VP22 contains an internal VP16 interaction domain and a C-terminal domain that are both required for VP22 assembly into the virus particle. . J Virol 79:, 13082–13093. [CrossRef] [PubMed]
    [Google Scholar]
  26. Hew K., Dahlroth S. L., Venkatachalam R., Nasertorabi F., Lim B. T., Cornvik T., Nordlund P.. ( 2013; ). The crystal structure of the DNA-binding domain of vIRF-1 from the oncogenic KSHV reveals a conserved fold for DNA binding and reinforces its role as a transcription factor. . Nucleic Acids Res 41:, 4295–4306. [CrossRef] [PubMed]
    [Google Scholar]
  27. Holm L., Rosenström P.. ( 2010; ). Dali server: conservation mapping in 3D. . Nucleic Acids Res 38: (Web Server issue), W545–549. [CrossRef] [PubMed]
    [Google Scholar]
  28. Jin G., Zhou Y., Chai Q., Zhu G., Xu F., Liu F.. ( 2013; ). VP22 and cytosine deaminase fusion gene modified tissue-engineered neural stem cells for glioma therapy. . J Cancer Res Clin Oncol 139:, 475–483. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kalejta R. F.. ( 2008; ). Tegument proteins of human cytomegalovirus. . Microbiol Mol Biol Rev 72:, 249–265. [CrossRef] [PubMed]
    [Google Scholar]
  30. Kelly B. J., Fraefel C., Cunningham A. L., Diefenbach R. J.. ( 2009; ). Functional roles of the tegument proteins of herpes simplex virus type 1. . Virus Res 145:, 173–186. [CrossRef] [PubMed]
    [Google Scholar]
  31. Kotsakis A., Pomeranz L. E., Blouin A., Blaho J. A.. ( 2001; ). Microtubule reorganization during herpes simplex virus type 1 infection facilitates the nuclear localization of VP22, a major virion tegument protein. . J Virol 75:, 8697–8711. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lai Z., Han I., Zirzow G., Brady R. O., Reiser J.. ( 2000; ). Intercellular delivery of a herpes simplex virus VP22 fusion protein from cells infected with lentiviral vectors. . Proc Natl Acad Sci U S A 97:, 11297–11302. [CrossRef] [PubMed]
    [Google Scholar]
  33. Lovell S. C., Davis I. W., Arendall W. B. III, de Bakker P. I. W., Word J. M., Prisant M. G., Richardson J. S., Richardson D. C.. ( 2003; ). Structure validation by Calpha geometry: ϕ,ψ and Cbeta deviation. . Proteins 50:, 437–450. [CrossRef] [PubMed]
    [Google Scholar]
  34. Maringer K., Elliott G.. ( 2010; ). Recruitment of herpes simplex virus type 1 immediate-early protein ICP0 to the virus particle. . J Virol 84:, 4682–4696. [CrossRef] [PubMed]
    [Google Scholar]
  35. Maringer K., Stylianou J., Elliott G.. ( 2012; ). A network of protein interactions around the herpes simplex virus tegument protein VP22. . J Virol 86:, 12971–12982. [CrossRef] [PubMed]
    [Google Scholar]
  36. Martin A., O’Hare P., McLauchlan J., Elliott G.. ( 2002; ). Herpes simplex virus tegument protein VP22 contains overlapping domains for cytoplasmic localization, microtubule interaction, and chromatin binding. . J Virol 76:, 4961–4970. [CrossRef] [PubMed]
    [Google Scholar]
  37. Mouzakitis G., McLauchlan J., Barreca C., Kueltzo L., O’Hare P.. ( 2005; ). Characterization of VP22 in herpes simplex virus-infected cells. . J Virol 79:, 12185–12198. [CrossRef] [PubMed]
    [Google Scholar]
  38. Murshudov G. N., Skubák P., Lebedev A. A., Pannu N. S., Steiner R. A., Nicholls R. A., Winn M. D., Long F., Vagin A. A.. ( 2011; ). refmac5 for the refinement of macromolecular crystal structures. . Acta Crystallogr D Biol Crystallogr 67:, 355–367. [CrossRef] [PubMed]
    [Google Scholar]
  39. O’Regan K. J., Bucks M. A., Murphy M. A., Wills J. W., Courtney R. J.. ( 2007; a). A conserved region of the herpes simplex virus type 1 tegument protein VP22 facilitates interaction with the cytoplasmic tail of glycoprotein E (gE). . Virology 358:, 192–200. [CrossRef] [PubMed]
    [Google Scholar]
  40. O’Regan K. J., Murphy M. A., Bucks M. A., Wills J. W., Courtney R. J.. ( 2007; b). Incorporation of the herpes simplex virus type 1 tegument protein VP22 into the virus particle is independent of interaction with VP16. . Virology 369:, 263–280. [CrossRef] [PubMed]
    [Google Scholar]
  41. O’Regan K. J., Brignati M. J., Murphy M. A., Bucks M. A., Courtney R. J.. ( 2010; ). Virion incorporation of the herpes simplex virus type 1 tegument protein VP22 is facilitated by trans-Golgi network localization and is independent of interaction with glycoprotein E. . Virology 405:, 176–192. [CrossRef] [PubMed]
    [Google Scholar]
  42. Otwinowski Z., Minor W.. ( 1997; ). Processing of X-ray diffraction data collected in oscillation mode. . Methods Enzymol 276:, 307–326. [CrossRef]
    [Google Scholar]
  43. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E.. ( 2004; ). UCSF Chimera – a visualization system for exploratory research and analysis. . J Comput Chem 25:, 1605–1612. [CrossRef] [PubMed]
    [Google Scholar]
  44. Potel C., Elliott G.. ( 2005; ). Phosphorylation of the herpes simplex virus tegument protein VP22 has no effect on incorporation of VP22 into the virus but is involved in optimal expression and virion packaging of ICP0. . J Virol 79:, 14057–14068. [CrossRef] [PubMed]
    [Google Scholar]
  45. Rozen R., Sathish N., Li Y., Yuan Y.. ( 2008; ). Virion-wide protein interactions of Kaposi’s sarcoma-associated herpesvirus. . J Virol 82:, 4742–4750. [CrossRef] [PubMed]
    [Google Scholar]
  46. Sathish N., Wang X., Yuan Y.. ( 2012; ). Tegument proteins of Kaposi’s sarcoma-associated herpesvirus and related gamma-herpesviruses. . Front Microbiol 3:, 98. [CrossRef] [PubMed]
    [Google Scholar]
  47. Sciortino M. T., Taddeo B., Poon A. P., Mastino A., Roizman B.. ( 2002; ). Of the three tegument proteins that package mRNA in herpes simplex virions, one (VP22) transports the mRNA to uninfected cells for expression prior to viral infection. . Proc Natl Acad Sci U S A 99:, 8318–8323. [CrossRef] [PubMed]
    [Google Scholar]
  48. Song M. J., Hwang S., Wong W. H., Wu T.-T., Lee S., Liao H.-I., Sun R.. ( 2005; ). Identification of viral genes essential for replication of murine gamma-herpesvirus 68 using signature-tagged mutagenesis. . Proc Natl Acad Sci U S A 102:, 3805–3810. [CrossRef] [PubMed]
    [Google Scholar]
  49. Stylianou J., Maringer K., Cook R., Bernard E., Elliott G.. ( 2009; ). Virion incorporation of the herpes simplex virus type 1 tegument protein VP22 occurs via glycoprotein E-specific recruitment to the late secretory pathway. . J Virol 83:, 5204–5218. [CrossRef] [PubMed]
    [Google Scholar]
  50. Tanaka M., Kato A., Satoh Y., Ide T., Sagou K., Kimura K., Hasegawa H., Kawaguchi Y.. ( 2012; ). Herpes simplex virus 1 VP22 regulates translocation of multiple viral and cellular proteins and promotes neurovirulence. . J Virol 86:, 5264–5277. [CrossRef] [PubMed]
    [Google Scholar]
  51. Uetz P., Dong Y. A., Zeretzke C., Atzler C., Baiker A., Berger B., Rajagopala S. V., Roupelieva M., Rose D. et al. ( 2006; ). Herpesviral protein networks and their interaction with the human proteome. . Science 311:, 239–242. [CrossRef] [PubMed]
    [Google Scholar]
  52. Vaguine A. A., Richelle J., Wodak S. J.. ( 1999; ). sfcheck: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. . Acta Crystallogr D Biol Crystallogr 55:, 191–205. [CrossRef] [PubMed]
    [Google Scholar]
  53. van Leeuwen H., Elliott G., O’Hare P.. ( 2002; ). Evidence of a role for nonmuscle myosin II in herpes simplex virus type 1 egress. . J Virol 76:, 3471–3481. [CrossRef] [PubMed]
    [Google Scholar]
  54. van Leeuwen H., Okuwaki M., Hong R., Chakravarti D., Nagata K., O’Hare P.. ( 2003; ). Herpes simplex virus type 1 tegument protein VP22 interacts with TAF-I proteins and inhibits nucleosome assembly but not regulation of histone acetylation by INHAT. . J Gen Virol 84:, 2501–2510. [CrossRef] [PubMed]
    [Google Scholar]
  55. Wang L., Guo H., Reyes N., Lee S., Bortz E., Guo F., Sun R., Tong L., Deng H.. ( 2012; ). Distinct domains in ORF52 tegument protein mediate essential functions in murine gammaherpesvirus 68 virion tegumentation and secondary envelopment. . J Virol 86:, 1348–1357. [CrossRef] [PubMed]
    [Google Scholar]
  56. Whitley R. J., Roizman B.. ( 2001; ). Herpes simplex virus infections. . Lancet 357:, 1513–1518. [CrossRef] [PubMed]
    [Google Scholar]
  57. Yedowitz J. C., Kotsakis A., Schlegel E. F. M., Blaho J. A.. ( 2005; ). Nuclear localizations of the herpes simplex virus type 1 tegument proteins VP13/14, vhs, and VP16 precede VP22-dependent microtubule reorganization and VP22 nuclear import. . J Virol 79:, 4730–4743. [CrossRef] [PubMed]
    [Google Scholar]
  58. Yu X., Liu L., Wu L., Wang L., Dong C., Li W., Li Q.. ( 2010; ). Herpes simplex virus type 1 tegument protein VP22 is capable of modulating the transcription of viral TK and gC genes via interaction with viral ICP0. . Biochimie 92:, 1024–1030. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000078
Loading
/content/journal/jgv/10.1099/vir.0.000078
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error