1887

Abstract

We previously reported that betanodavirus reassortant strains [redspotted grouper nervous necrosis virus/striped jack nervous necrosis virus (SJNNV)] isolated from Senegalese sole () exhibited a modified SJNNV capsid amino acid sequence, with changes at aa 247 and 270. In the current study, we investigated the possible role of both residues as putative virulence determinants. Three recombinant viruses harbouring site-specific mutations in the capsid protein sequence, rSs160.03 (S247A), rSs160.03 (S270N) and rSs160.03 (S247A/S270N), were generated using a reverse genetics system. These recombinant viruses were studied in cell culture and in the natural fish host. The three mutant viruses were shown to be infectious and able to replicate in E-11 cells, reaching final titres similar to the WT virus, although with a somewhat slower kinetics of replication. When the effect of the amino acid substitutions on virus pathogenicity was evaluated in Senegalese sole, typical clinical signs of betanodavirus infection were observed in all groups. However, fish mortality induced by all three mutant viruses was clearly affected. Roughly 40 % of the fish survived in these three groups in contrast with the WT virus which killed 100 % of the fish. These data demonstrated that aa 247 and 270 play a major role in betanodavirus virulence although when both mutated aa 247 and 270 are present, corresponding recombinant virus was not further attenuated.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000064
2015-06-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/6/1287.html?itemId=/content/journal/jgv/10.1099/vir.0.000064&mimeType=html&fmt=ahah

References

  1. Ahnn S., Anderson S. J.. ( 1995; ). Sample size determination for comparing more than two survival distributions. . Stat Med 14:, 2273–2282. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ball L. A., Johnson K. L.. ( 1999; ). Reverse genetics of nodaviruses. . Adv Virus Res 53:, 229–244. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bergeron É., Chakrabarti A. K., Bird B. H., Dodd K. A., McMullan L. K., Spiropoulou C. F., Nichol S. T., Albariño C. G.. ( 2012; ). Reverse genetics recovery of Lujo virus and role of virus RNA secondary structures in efficient virus growth. . J Virol 86:, 10759–10765. [CrossRef] [PubMed]
    [Google Scholar]
  4. Biacchesi S.. ( 2011; ). The reverse genetics applied to fish RNA viruses. . Vet Res 42:, 12. [CrossRef] [PubMed]
    [Google Scholar]
  5. Biacchesi S., Thoulouze M. I., Béarzotti M., Yu Y. X., Brémont M.. ( 2000; ). Recovery of NV knockout infectious hematopoietic necrosis virus expressing foreign genes. . J Virol 74:, 11247–11253. [CrossRef] [PubMed]
    [Google Scholar]
  6. Buchholz U. J., Finke S., Conzelmann K. K.. ( 1999; ). Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. . J Virol 73:, 251–259.[PubMed]
    [Google Scholar]
  7. Comps M., Pépin J. F., Bonami J. R.. ( 1994; ). Purification and characterization of two fish encephalitis viruses (FEV) infecting Lates calcarifer and Dicentrarchus labrax. . Aquaculture 123:, 1–10. [CrossRef]
    [Google Scholar]
  8. Cutrín J. M., Dopazo C. P., Thiéry R., Leao P., Olveira J. G., Barja J. L., Bandín I.. ( 2007; ). Emergence of pathogenic betanodaviruses belonging to the SJNNV genogroup in farmed fish species from the Iberian Peninsula. . J Fish Dis 30:, 225–232. [CrossRef] [PubMed]
    [Google Scholar]
  9. Diamond M. S.. ( 2009; ). Virus and host determinants of West Nile virus pathogenesis. . PLoS Pathog 5:, e1000452. [CrossRef] [PubMed]
    [Google Scholar]
  10. Dietzschold B., Wiktor T. J., Trojanowski J. Q., Macfarlan R. I., Wunner W. H., Torres-Anjel M. J., Koprowski H.. ( 1985; ). Differences in cell-to-cell spread of pathogenic and apathogenic rabies virus in vivo and in vitro. . J Virol 56:, 12–18.[PubMed]
    [Google Scholar]
  11. Frerichs G. N., Morgan D., Hart D., Skerrow C., Roberts R. J., Onions D. E.. ( 1991; ). Spontaneously productive C-type retrovirus infection of fish cell lines. . J Gen Virol 72:, 2537–2539. [CrossRef] [PubMed]
    [Google Scholar]
  12. Horimoto T., Kawaoka Y.. ( 1994; ). Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. . J Virol 68:, 3120–3128.[PubMed]
    [Google Scholar]
  13. Ito Y., Okinaka Y., Mori K.-I., Sugaya T., Nishioka T., Oka M., Nakai T.. ( 2008; ). Variable region of betanodavirus RNA2 is sufficient to determine host specificity. . Dis Aquat Organ 79:, 199–205. [CrossRef] [PubMed]
    [Google Scholar]
  14. Iwamoto T., Nakai T., Mori K., Arimoto M., Furusawa I.. ( 2000; ). Cloning of the fish cell line SSN-1 for piscine nodaviruses. . Dis Aquat Organ 43:, 81–89. [CrossRef] [PubMed]
    [Google Scholar]
  15. Iwamoto T., Okinaka Y., Mise K., Mori K.-I., Arimoto M., Okuno T., Nakai T.. ( 2004; ). Identification of host-specificity determinants in betanodaviruses by using reassortants between striped jack nervous necrosis virus and sevenband grouper nervous necrosis virus. . J Virol 78:, 1256–1262. [CrossRef] [PubMed]
    [Google Scholar]
  16. Lee P., Knight R., Smit J. M., Wilschut J., Griffin D. E.. ( 2002; ). A single mutation in the E2 glycoprotein important for neurovirulence influences binding of sindbis virus to neuroblastoma cells. . J Virol 76:, 6302–6310. [CrossRef] [PubMed]
    [Google Scholar]
  17. Liu W., Hsu C.-H., Hong Y.-R., Wu S.-C., Wang C.-H., Wu Y.-M., Chao C.-B., Lin C.-S.. ( 2005; ). Early endocytosis pathways in SSN-1 cells infected by dragon grouper nervous necrosis virus. . J Gen Virol 86:, 2553–2561. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lycett S. J., Ward M. J., Lewis F. I., Poon A. F. Y., Kosakovsky Pond S. L., Brown A. J.. ( 2009; ). Detection of mammalian virulence determinants in highly pathogenic avian influenza H5N1 viruses: multivariate analysis of published data. . J Virol 83:, 9901–9910. [CrossRef] [PubMed]
    [Google Scholar]
  19. Mori K., Nakai T., Muroga K., Arimoto M., Mushiake K., Furusawa I.. ( 1992; ). Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. . Virology 187:, 368–371. [CrossRef] [PubMed]
    [Google Scholar]
  20. Munday B. L., Kwang J., Moody N.. ( 2002; ). Betanodavirus infections of teleost fish: a review. . J Fish Dis 25:, 127–142. [CrossRef]
    [Google Scholar]
  21. Névarez L., Cozien J., Thiéry R.. ( 2005; ). [ Analysis of the phylogentic comparison of the capsid protein genes of RNA polymerase of fish nodavirus. ]. Virologie 9:, 115–166 (in French).
    [Google Scholar]
  22. Nishizawa T., Furuhashi M., Nagai T., Nakai T., Muroga K.. ( 1997; ). Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. . Appl Environ Microbiol 63:, 1633–1636.[PubMed]
    [Google Scholar]
  23. Olveira J. G., Souto S., Dopazo C. P., Thiéry R., Barja J. L., Bandín I.. ( 2009; ). Comparative analysis of both genomic segments of betanodaviruses isolated from epizootic outbreaks in farmed fish species provides evidence for genetic reassortment. . J Gen Virol 90:, 2940–2951. [CrossRef] [PubMed]
    [Google Scholar]
  24. Olveira J. G., Souto S., Dopazo C. P., Bandín I.. ( 2013; ). Isolation of betanodavirus from farmed turbot Psetta maxima showing no signs of viral encephalopathy and retinopathy. . Aquaculture 406–407:, 125–130. [CrossRef]
    [Google Scholar]
  25. Panzarin V., Fusaro A., Monne I., Cappellozza E., Patarnello P., Bovo G., Capua I., Holmes E. C., Cattoli G.. ( 2012; ). Molecular epidemiology and evolutionary dynamics of betanodavirus in southern Europe. . Infect Genet Evol 12:, 63–70. [CrossRef] [PubMed]
    [Google Scholar]
  26. Reed L., Müench H.. ( 1938; ). A simple method of estimating fifty per cent endpoints. . Am J Epidemiol 27:, 493–497.
    [Google Scholar]
  27. Robertson S. J., Hasenkrug K. J., Chesebro B., Portis J. L.. ( 1997; ). Neurologic disease induced by polytropic murine retroviruses: neurovirulence determined by efficiency of spread to microglial cells. . J Virol 71:, 5287–5294.[PubMed]
    [Google Scholar]
  28. Seganti L., Superti F., Bianchi S., Orsi N., Divizia M., Panà A.. ( 1990; ). Susceptibility of mammalian, avian, fish, and mosquito cell lines to rabies virus infection. . Acta Virol 34:, 155–163.[PubMed]
    [Google Scholar]
  29. Takizawa N., Adachi K., Kobayashi N.. ( 2008; ). Establishment of reverse genetics system of betanodavirus for the efficient recovery of infectious particles. . J Virol Methods 151:, 271–276. [CrossRef] [PubMed]
    [Google Scholar]
  30. Tang L., Lin C.-S., Krishna N. K., Yeager M., Schneemann A., Johnson J. E.. ( 2002; ). Virus-like particles of a fish nodavirus display a capsid subunit domain organization different from that of insect nodaviruses. . J Virol 76:, 6370–6375. [CrossRef] [PubMed]
    [Google Scholar]
  31. Toffolo V., Negrisolo E., Maltese C., Bovo G., Belvedere P., Colombo L., Valle L. D.. ( 2007; ). Phylogeny of betanodaviruses and molecular evolution of their RNA polymerase and coat proteins. . Mol Phylogenet Evol 43:, 298–308. [CrossRef] [PubMed]
    [Google Scholar]
  32. Wang L., Lee C.-W.. ( 2009; ). Sequencing and mutational analysis of the non-coding regions of influenza A virus. . Vet Microbiol 135:, 239–247. [CrossRef] [PubMed]
    [Google Scholar]
  33. Zhang H., Hale B. G., Xu K., Sun B.. ( 2013; ). Viral and host factors required for avian H5N1 influenza A virus replication in mammalian cells. . Viruses 5:, 1431–1446. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000064
Loading
/content/journal/jgv/10.1099/vir.0.000064
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error