1887

Abstract

is a family of bacteriophages with a tri-segmented dsRNA genome enclosed in a tri-layered virion structure. Here, we present a new putative member of the family, bacteriophage ϕNN. ϕNN was isolated from a Finnish lake in contrast to the previously identified cystoviruses, which originate from various legume samples collected in the USA. The nucleotide sequence of the virus reveals a strong genetic similarity (~80 % for the L-segments, ~55 % for the M-segments and ~84 % for the S-segments) to phage ϕ6, the type member of the virus family. However, the relationship between ϕNN and other cystoviruses is more distant. In general, proteins located in the internal parts of the virion were more conserved than those exposed on the virion surface, a phenomenon previously reported among eukaryotic dsRNA viruses. Structural models of several putative ϕNN proteins propose that cystoviral structures are highly conserved.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000063
2015-05-01
2020-11-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/5/1180.html?itemId=/content/journal/jgv/10.1099/vir.0.000063&mimeType=html&fmt=ahah

References

  1. Bamford D. H., Palva E. T. 1980; Structure of the lipid-containing bacteriophage φ6. Disruption by Triton X-100 treatment. Biochim Biophys Acta 601:245–259 [CrossRef][PubMed]
    [Google Scholar]
  2. Bamford D. H., Ojala P. M., Frilander M., Walin L., Bamford J. K. H. 1995; Isolation, purification, and function of assembly intermediates and subviral particles of bacteriophages PRD1 and σ6. Methods Mol Genet 6:455–474 [CrossRef]
    [Google Scholar]
  3. Bamford D. H., Burnett R. M., Stuart D. I. 2002; Evolution of viral structure. Theor Popul Biol 61:461–470 [CrossRef][PubMed]
    [Google Scholar]
  4. Besemer J., Lomsadze A., Borodovsky M. 2001; GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618 [CrossRef][PubMed]
    [Google Scholar]
  5. Brown D. W. 1997; Threat to humans from virus infections of non-human primates. Rev Med Virol 7:239–246 [CrossRef][PubMed]
    [Google Scholar]
  6. Bruenn J. A. 2003; A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res 31:1821–1829 [CrossRef][PubMed]
    [Google Scholar]
  7. Burch C. L., Guyader S., Samarov D., Shen H. 2007; Experimental estimate of the abundance and effects of nearly neutral mutations in the RNA virus φ6. Genetics 176:467–476 [CrossRef][PubMed]
    [Google Scholar]
  8. Butcher S. J., Dokland T., Ojala P. M., Bamford D. H., Fuller S. D. 1997; Intermediates in the assembly pathway of the double-stranded RNA virus φ6. EMBO J 16:4477–4487 [CrossRef][PubMed]
    [Google Scholar]
  9. Butcher S. J., Grimes J. M., Makeyev E. V., Bamford D. H., Stuart D. I. 2001; A mechanism for initiating RNA-dependent RNA polymerization. Nature 410:235–240 [CrossRef][PubMed]
    [Google Scholar]
  10. Chao L., Rang C. U., Wong L. E. 2002; Distribution of spontaneous mutants and inferences about the replication mode of the RNA bacteriophage φ6. J Virol 76:3276–3281 [CrossRef][PubMed]
    [Google Scholar]
  11. Dennehy J. J., Turner P. E. 2004; Reduced fecundity is the cost of cheating in RNA virus φ6.. Proc Biol Sci 271:2275–2282 [CrossRef][PubMed]
    [Google Scholar]
  12. Domingo E., Holland J. J. 1997; RNA virus mutations and fitness for survival. Annu Rev Microbiol 51:151–178 [CrossRef][PubMed]
    [Google Scholar]
  13. Duffy S., Turner P. E., Burch C. L. 2006; Pleiotropic costs of niche expansion in the RNA bacteriophage ϕ6.. Genetics 172:751–757 [CrossRef][PubMed]
    [Google Scholar]
  14. El Omari K., Sutton G., Ravantti J. J., Zhang H., Walter T. S., Grimes J. M., Bamford D. H., Stuart D. I., Mancini E. J. 2013a). Plate tectonics of virus shell assembly and reorganization in phage φ8, a distant relative of mammalian reoviruses. Structure 21:1384–1395 [CrossRef][PubMed]
    [Google Scholar]
  15. El Omari K., Meier C., Kainov D., Sutton G., Grimes J. M., Poranen M. M., Bamford D. H., Tuma R., Stuart D. I., Mancini E. J. 2013b). Tracking in atomic detail the functional specializations in viral RecA helicases that occur during evolution. Nucleic Acids Res 41:9396–9410 [CrossRef][PubMed]
    [Google Scholar]
  16. Ferris M. T., Joyce P., Burch C. L. 2007; High frequency of mutations that expand the host range of an RNA virus. Genetics 176:1013–1022 [CrossRef][PubMed]
    [Google Scholar]
  17. Gibbs M. J., Weiller G. F. 1999; Evidence that a plant virus switched hosts to infect a vertebrate and then recombined with a vertebrate-infecting virus. Proc Natl Acad Sci U S A 96:8022–8027 [CrossRef][PubMed]
    [Google Scholar]
  18. Gottlieb P., Metzger S., Romantschuk M., Carton J., Strassman J., Bamford D. H., Kalkkinen N., Mindich L. 1988; Nucleotide sequence of the middle dsRNA segment of bacteriophage φ6: placement of the genes of membrane-associated proteins. Virology 163:183–190 [CrossRef][PubMed]
    [Google Scholar]
  19. Gottlieb P., Potgieter C., Wei H., Toporovsky I. 2002; Characterization of φ12, a bacteriophage related to φ6: nucleotide sequence of the large double-stranded RNA. Virology 295:266–271 [CrossRef][PubMed]
    [Google Scholar]
  20. Hoogstraten D., Qiao X., Sun Y., Hu A., Onodera S., Mindich L. 2000; Characterization of ϕ8, a bacteriophage containing three double-stranded RNA genomic segments and distantly related to ϕ6. Virology 272:218–224 [CrossRef][PubMed]
    [Google Scholar]
  21. Huiskonen J. T., de Haas F., Bubeck D., Bamford D. H., Fuller S. D., Butcher S. J. 2006; Structure of the bacteriophage φ6 nucleocapsid suggests a mechanism for sequential RNA packaging. Structure 14:1039–1048 [CrossRef][PubMed]
    [Google Scholar]
  22. Huson D. H., Scornavacca C. 2012; Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 61:1061–1067 [CrossRef][PubMed]
    [Google Scholar]
  23. Khatchikian D., Orlich M., Rott R. 1989; Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature 340:156–157 [CrossRef][PubMed]
    [Google Scholar]
  24. Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S. J., Marra M. A. 2009; Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645 [CrossRef][PubMed]
    [Google Scholar]
  25. Ktistakis N. T., Lang D. 1987; The dodecahedral framework of the bacteriophage φ6 nucleocapsid is composed of protein P1. J Virol 61:2621–2623[PubMed]
    [Google Scholar]
  26. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  27. Luque D., González J. M., Garriga D., Ghabrial S. A., Havens W. M., Trus B., Verdaguer N., Carrascosa J. L., Castón J. R. 2010; The T = 1 capsid protein of Penicillium chrysogenum virus is formed by a repeated helix-rich core indicative of gene duplication. J Virol 84:7256–7266 [CrossRef][PubMed]
    [Google Scholar]
  28. Malim M. H., Emerman M. 2001; HIV-1 sequence variation: drift, shift, and attenuation. Cell 104:469–472 [CrossRef][PubMed]
    [Google Scholar]
  29. Mancini E. J., Kainov D. E., Grimes J. M., Tuma R., Bamford D. H., Stuart D. I. 2004; Atomic snapshots of an RNA packaging motor reveal conformational changes linking ATP hydrolysis to RNA translocation. Cell 118:743–755 [CrossRef][PubMed]
    [Google Scholar]
  30. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. McGraw T., Mindich L., Frangione B. 1986; Nucleotide sequence of the small double-stranded RNA segment of bacteriophage φ6: novel mechanism of natural translational control. J Virol 58:142–151[PubMed]
    [Google Scholar]
  32. Mertens P. 2004; The dsRNA viruses. Virus Res 101:3–13 [CrossRef][PubMed]
    [Google Scholar]
  33. Mindich L. 1988; Bacteriophage φ6: a unique virus having a lipid-containing membrane and a genome composed of three dsRNA segments. Adv Virus Res 35:137–176 [CrossRef][PubMed]
    [Google Scholar]
  34. Mindich L. 1999; Precise packaging of the three genomic segments of the double-stranded-RNA bacteriophage φ6. Microbiol Mol Biol Rev 63:149–160[PubMed]
    [Google Scholar]
  35. Mindich L., Nemhauser I., Gottlieb P., Romantschuk M., Carton J., Frucht S., Strassman J., Bamford D. H., Kalkkinen N. 1988; Nucleotide sequence of the large double-stranded RNA segment of bacteriophage φ6: genes specifying the viral replicase and transcriptase. J Virol 62:1180–1185[PubMed]
    [Google Scholar]
  36. Mindich L., Qiao X., Qiao J., Onodera S., Romantschuk M., Hoogstraten D. 1999; Isolation of additional bacteriophages with genomes of segmented double-stranded RNA. J Bacteriol 181:4505–4508[PubMed]
    [Google Scholar]
  37. Mönttinen H. A., Ravantti J. J., Stuart D. I., Poranen M. M. 2014; Automated structural comparisons clarify the phylogeny of the right-hand-shaped polymerases. Mol Biol Evol 31:2741–2752 [CrossRef][PubMed]
    [Google Scholar]
  38. Nemecek D., Boura E., Wu W., Cheng N., Plevka P., Qiao J., Mindich L., Heymann J. B., Hurley J. H., Steven A. C. 2013; Subunit folds and maturation pathway of a dsRNA virus capsid. Structure 21:1374–1383 [CrossRef][PubMed]
    [Google Scholar]
  39. Nora T., Charpentier C., Tenaillon O., Hoede C., Clavel F., Hance A. J. 2007; Contribution of recombination to the evolution of human immunodeficiency viruses expressing resistance to antiretroviral treatment. J Virol 81:7620–7628 [CrossRef][PubMed]
    [Google Scholar]
  40. O’Keefe K. J., Silander O. K., McCreery H., Weinreich D. M., Wright K. M., Chao L., Edwards S. V., Remold S. K., Turner P. E. 2010; Geographic differences in sexual reassortment in RNA phage. Evolution 64:3010–3023[PubMed]
    [Google Scholar]
  41. Olkkonen V. M., Bamford D. H. 1987; The nucleocapsid of the lipid-containing double-stranded RNA bacteriophage φ6 contains a protein skeleton consisting of a single polypeptide species. J Virol 61:2362–2367[PubMed]
    [Google Scholar]
  42. Onodera S., Sun Y., Mindich L. 2001; Reverse genetics and recombination in ϕ8, a dsRNA bacteriophage. Virology 286:113–118 [CrossRef][PubMed]
    [Google Scholar]
  43. Poch O., Sauvaget I., Delarue M., Tordo N. 1989; Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8:3867–3874[PubMed]
    [Google Scholar]
  44. Poranen M. M., Bamford D. H. 2012a). Cystoviridae. In Virus Taxonomy, Ninth Report of the International Committee on Taxonomy of Viruses pp. 515–518 Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. San Diego: Elsevier;
    [Google Scholar]
  45. Poranen M. M., Bamford D. H. 2012b). Assembly of large icosahedral double-stranded RNA viruses. Adv Exp Med Biol 726:379–402 [CrossRef][PubMed]
    [Google Scholar]
  46. Qiao X., Qiao J., Mindich L. 1997; An in vitro system for the investigation of heterologous RNA recombination. Virology 227:103–110 [CrossRef][PubMed]
    [Google Scholar]
  47. Qiao X., Qiao J., Onodera S., Mindich L. 2000; Characterization of ϕ13, a bacteriophage related to ϕ6 and containing three dsRNA genomic segments. Virology 275:218–224 [CrossRef][PubMed]
    [Google Scholar]
  48. Qiao X., Sun Y., Qiao J., Di Sanzo F., Mindich L. 2010; Characterization of ϕ2954, a newly isolated bacteriophage containing three dsRNA genomic segments. BMC Microbiol 10:55 [CrossRef][PubMed]
    [Google Scholar]
  49. Ravantti J., Bamford D., Stuart D. I. 2013; Automatic comparison and classification of protein structures. J Struct Biol 183:47–56 [CrossRef][PubMed]
    [Google Scholar]
  50. Ren Z., Franklin M. C., Ghose R. 2013; Structure of the RNA-directed RNA polymerase from the cystovirus φ12. Proteins 81:1479–1484 [CrossRef][PubMed]
    [Google Scholar]
  51. Rice P., Longden I., Bleasby A. 2000; EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277 [CrossRef][PubMed]
    [Google Scholar]
  52. Roy A., Zhang Y. 2012; Recognizing protein-ligand binding sites by global structural alignment and local geometry refinement. Structure 20:987–997 [CrossRef][PubMed]
    [Google Scholar]
  53. Roy A., Kucukural A., Zhang Y. 2010; I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738 [CrossRef][PubMed]
    [Google Scholar]
  54. Sambrook J., Fritsch E., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  55. Shine J., Dalgarno L. 1975; Determinant of cistron specificity in bacterial ribosomes. Nature 254:34–38 [CrossRef][PubMed]
    [Google Scholar]
  56. Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M. et al. 2011; Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539 [CrossRef][PubMed]
    [Google Scholar]
  57. Silander O. K., Weinreich D. M., Wright K. M., O’Keefe K. J., Rang C. U., Turner P. E., Chao L. 2005; Widespread genetic exchange among terrestrial bacteriophages. Proc Natl Acad Sci U S A 102:19009–19014 [CrossRef][PubMed]
    [Google Scholar]
  58. Sinclair J. F., Cohen J., Mindichi L. 1976; The isolation of suppressible nonsense mutants of bacteriophage φ6. Virology 75:198–208 [CrossRef]
    [Google Scholar]
  59. Sippl M. J. 1993; Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362 [CrossRef][PubMed]
    [Google Scholar]
  60. Vidaver A. K., Koski R. K., Van Etten J. L. 1973; Bacteriophage ϕ6: a lipid-containing virus of Pseudomonas phaseolicola . J Virol 11:799–805[PubMed]
    [Google Scholar]
  61. Webster R. G., Bean W. J., Gorman O. T., Chambers T. M., Kawaoka Y. 1992; Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179[PubMed]
    [Google Scholar]
  62. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  63. Wiederstein M., Sippl M. J. 2007; ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:Web Server issueW407–W410 [CrossRef][PubMed]
    [Google Scholar]
  64. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000063
Loading
/content/journal/jgv/10.1099/vir.0.000063
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error