1887

Abstract

Rapid biosynthesis is key to the success of bacteria and viruses. Highly expressed genes in bacteria exhibit a strong codon bias corresponding to the differential availability of tRNAs. However, a large clade of lambdoid coliphages exhibits relatively poor codon adaptation to the host translation machinery, in contrast to other coliphages that exhibit strong codon adaptation to the host. Three possible explanations were previously proposed but dismissed: (1) the phage-borne tRNA genes that reduce the dependence of phage translation on host tRNAs, (2) lack of time needed for evolving codon adaptation due to recent host switching, and (3) strong strand asymmetry with biased mutation disrupting codon adaptation. Here, we examined the possibility that phages with relatively poor codon adaptation have poor translation initiation which would weaken the selection on codon adaptation. We measured translation initiation by: (1) the strength and position of the Shine–Dalgarno (SD) sequence, and (2) the stability of the secondary structure of sequences flanking the SD and start codon known to affect accessibility of the SD sequence and start codon. Phage genes with strong codon adaptation had significantly stronger SD sequences than those with poor codon adaptation. The former also had significantly weaker secondary structure in sequences flanking the SD sequence and start codon than the latter. Thus, lambdoid phages do not exhibit strong codon adaptation because they have relatively inefficient translation initiation and would benefit little from increased elongation efficiency. We also provided evidence suggesting that phage lifestyle (virulent versus temperate) affected selection intensity on the efficiency of translation initiation and elongation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000050
2015-05-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/5/1169.html?itemId=/content/journal/jgv/10.1099/vir.0.000050&mimeType=html&fmt=ahah

References

  1. Chithambaram S., Prabhakaran R., Xia X.. ( 2014; a). Differential codon adaptation between dsDNA and ssDNA phages in Escherichia coli. . Mol Biol Evol 31:, 1606–1617. [CrossRef] [PubMed]
    [Google Scholar]
  2. Chithambaram S., Prabhakaran R., Xia X.. ( 2014; b). The effect of mutation and selection on codon adaptation in Escherichia coli bacteriophage. . Genetics 197:, 301–315. [CrossRef] [PubMed]
    [Google Scholar]
  3. Coghlan A., Wolfe K. H.. ( 2000; ). Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. . Yeast 16:, 1131–1145. [CrossRef] [PubMed]
    [Google Scholar]
  4. Comeron J. M., Aguadé M.. ( 1998; ). An evaluation of measures of synonymous codon usage bias. . J Mol Evol 47:, 268–274. [CrossRef] [PubMed]
    [Google Scholar]
  5. de Smit M. H., van Duin J.. ( 1990; ). Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. . Proc Natl Acad Sci U S A 87:, 7668–7672. [CrossRef] [PubMed]
    [Google Scholar]
  6. de Smit M. H., van Duin J.. ( 1994; ). Translational initiation on structured messengers. Another role for the Shine–Dalgarno interaction. . J Mol Biol 235:, 173–184. [CrossRef] [PubMed]
    [Google Scholar]
  7. Deschavanne P., DuBow M. S., Regeard C.. ( 2010; ). The use of genomic signature distance between bacteriophages and their hosts displays evolutionary relationships and phage growth cycle determination. . Virol J 7:, 163. [CrossRef] [PubMed]
    [Google Scholar]
  8. Duret L., Mouchiroud D.. ( 1999; ). Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. . Proc Natl Acad Sci U S A 96:, 4482–4487. [CrossRef] [PubMed]
    [Google Scholar]
  9. Fargo D. C., Zhang M., Gillham N. W., Boynton J. E.. ( 1998; ). Shine–Dalgarno-like sequences are not required for translation of chloroplast mRNAs in Chlamydomonas reinhardtii chloroplasts or in Escherichia coli. . Mol Gen Genet 257:, 271–282. [CrossRef] [PubMed]
    [Google Scholar]
  10. Felsenstein J.. ( 1985; ). Phylogenies and the comparative method. . Am Nat 125:, 1–15. [CrossRef]
    [Google Scholar]
  11. Giliberti J., O’Donnell S., Van Etten W. J., Janssen G. R.. ( 2012; ). A 5′-terminal phosphate is required for stable ternary complex formation and translation of leaderless mRNA in Escherichia coli. . RNA 18:, 508–518. [CrossRef] [PubMed]
    [Google Scholar]
  12. Haas J., Park E.-C., Seed B.. ( 1996; ). Codon usage limitation in the expression of HIV-1 envelope glycoprotein. . Curr Biol 6:, 315–324. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hartz D., McPheeters D. S., Gold L.. ( 1991; ). Influence of mRNA determinants on translation initiation in Escherichia coli. . J Mol Biol 218:, 83–97. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hofacker I. L.. ( 2003; ). Vienna RNA secondary structure server. . Nucleic Acids Res 31:, 3429–3431. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hui A., de Boer H. A.. ( 1987; ). Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. . Proc Natl Acad Sci U S A 84:, 4762–4766. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ikemura T.. ( 1981; a). Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. . J Mol Biol 146:, 1–21. [CrossRef] [PubMed]
    [Google Scholar]
  17. Ikemura T.. ( 1981; b). Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. . J Mol Biol 151:, 389–409. [CrossRef] [PubMed]
    [Google Scholar]
  18. Ikemura T.. ( 1982; ). Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. . J Mol Biol 158:, 573–597. [CrossRef] [PubMed]
    [Google Scholar]
  19. Ikemura T.. ( 1992; ). Correlation between codon usage and tRNA content in microorganisms. . In Transfer RNA in Protein Synthesis, pp. 87–111. Edited by Hatfield D. L., Lee B. J., Pirtle R. M... Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  20. Komarova A. V., Tchufistova L. S., Supina E. V., Boni I. V.. ( 2002; ). Protein S1 counteracts the inhibitory effect of the extended Shine–Dalgarno sequence on translation. . RNA 8:, 1137–1147. [CrossRef] [PubMed]
    [Google Scholar]
  21. Krishnan K. M., Van Etten W. J. III, Janssen G. R.. ( 2010; ). Proximity of the start codon to a leaderless mRNA’s 5′ terminus is a strong positive determinant of ribosome binding and expression in Escherichia coli. . J Bacteriol 192:, 6482–6485. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kudla G., Murray A. W., Tollervey D., Plotkin J. B.. ( 2009; ). Coding-sequence determinants of gene expression in Escherichia coli. . Science 324:, 255–258. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lima-Mendez G., Toussaint A., Leplae R.. ( 2007; ). Analysis of the phage sequence space: the benefit of structured information. . Virology 365:, 241–249. [CrossRef] [PubMed]
    [Google Scholar]
  24. Limor-Waisberg K., Carmi A., Scherz A., Pilpel Y., Furman I.. ( 2011; ). Specialization versus adaptation: two strategies employed by cyanophages to enhance their translation efficiencies. . Nucleic Acids Res 39:, 6016–6028. [CrossRef] [PubMed]
    [Google Scholar]
  25. Ma J., Campbell A., Karlin S.. ( 2002; ). Correlations between Shine–Dalgarno sequences and gene features such as predicted expression levels and operon structures. . J Bacteriol 184:, 5733–5745. [CrossRef] [PubMed]
    [Google Scholar]
  26. Marín A., Xia X.. ( 2008; ). GC skew in protein-coding genes between the leading and lagging strands in bacterial genomes: new substitution models incorporating strand bias. . J Theor Biol 253:, 508–513. [CrossRef] [PubMed]
    [Google Scholar]
  27. McNair K., Bailey B. A., Edwards R. A.. ( 2012; ). phacts, a computational approach to classifying the lifestyle of phages. . Bioinformatics 28:, 614–618. [CrossRef] [PubMed]
    [Google Scholar]
  28. Melançon P., Leclerc D., Destroismaisons N., Brakier-Gingras L.. ( 1990; ). The anti-Shine–Dalgarno region in Escherichia coli 16S ribosomal RNA is not essential for the correct selection of translational starts. . Biochemistry 29:, 3402–3407. [CrossRef] [PubMed]
    [Google Scholar]
  29. Milón P., Rodnina M. V.. ( 2012; ). Kinetic control of translation initiation in bacteria. . Crit Rev Biochem Mol Biol 47:, 334–348. [CrossRef] [PubMed]
    [Google Scholar]
  30. Milón P., Maracci C., Filonava L., Gualerzi C. O., Rodnina M. V.. ( 2012; ). Real-time assembly landscape of bacterial 30S translation initiation complex. . Nat Struct Mol Biol 19:, 609–615. [CrossRef] [PubMed]
    [Google Scholar]
  31. Na D., Lee D.. ( 2010; ). RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. . Bioinformatics 26:, 2633–2634. [CrossRef] [PubMed]
    [Google Scholar]
  32. Nakamoto T.. ( 2006; ). A unified view of the initiation of protein synthesis. . Biochem Biophys Res Commun 341:, 675–678. [CrossRef] [PubMed]
    [Google Scholar]
  33. Ngumbela K. C., Ryan K. P., Sivamurthy R., Brockman M. A., Gandhi R. T., Bhardwaj N., Kavanagh D. G.. ( 2008; ). Quantitative effect of suboptimal codon usage on translational efficiency of mRNA encoding HIV-1 gag in intact T cells. . PLoS One 3:, e2356. [CrossRef] [PubMed]
    [Google Scholar]
  34. Nivinskas R., Malys N., Klausa V., Vaiskunaite R., Gineikiene E.. ( 1999; ). Post-transcriptional control of bacteriophage T4 gene 25 expression: mRNA secondary structure that enhances translational initiation. . J Mol Biol 288:, 291–304. [CrossRef] [PubMed]
    [Google Scholar]
  35. O’Donnell S. M., Janssen G. R.. ( 2001; ). The initiation codon affects ribosome binding and translational efficiency in Escherichia coli of cI mRNA with or without the 5′ untranslated leader. . J Bacteriol 183:, 1277–1283. [CrossRef] [PubMed]
    [Google Scholar]
  36. O’Donnell S. M., Janssen G. R.. ( 2002; ). Leaderless mRNAs bind 70S ribosomes more strongly than 30S ribosomal subunits in Escherichia coli. . J Bacteriol 184:, 6730–6733. [CrossRef] [PubMed]
    [Google Scholar]
  37. Olsthoorn R. C. L., Zoog S., van Duin J.. ( 1995; ). Coevolution of RNA helix stability and Shine–Dalgarno complementarity in a translational start region. . Mol Microbiol 15:, 333–339. [CrossRef] [PubMed]
    [Google Scholar]
  38. Osterman I. A., Evfratov S. A., Sergiev P. V., Dontsova O. A.. ( 2013; ). Comparison of mRNA features affecting translation initiation and reinitiation. . Nucleic Acids Res 41:, 474–486. [CrossRef] [PubMed]
    [Google Scholar]
  39. Prabhakaran R., Chithambaram S., Xia X.. ( 2014; ). Aeromonas phages encode tRNAs for their overused codons. . Int J Comput Biol Drug Des 7:, 168–182. [CrossRef] [PubMed]
    [Google Scholar]
  40. Ringquist S., Shinedling S., Barrick D., Green L., Binkley J., Stormo G. D., Gold L.. ( 1992; ). Translation initiation in Escherichia coli: sequences within the ribosome-binding site. . Mol Microbiol 6:, 1219–1229. [CrossRef] [PubMed]
    [Google Scholar]
  41. Robinson M., Lilley R., Little S., Emtage J. S., Yarranton G., Stephens P., Millican A., Eaton M., Humphreys G.. ( 1984; ). Codon usage can affect efficiency of translation of genes in Escherichia coli. . Nucleic Acids Res 12:, 6663–6671. [CrossRef] [PubMed]
    [Google Scholar]
  42. Salis H. M.. ( 2011; ). The ribosome binding site calculator. . Methods Enzymol 498:, 19–42. [CrossRef] [PubMed]
    [Google Scholar]
  43. Sartorius-Neef S., Pfeifer F.. ( 2004; ). In vivo studies on putative Shine–Dalgarno sequences of the halophilic archaeon Halobacterium salinarum. . Mol Microbiol 51:, 579–588. [CrossRef] [PubMed]
    [Google Scholar]
  44. Schattner P., Brooks A. N., Lowe T. M.. ( 2005; ). The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. . Nucleic Acids Res 33: (Web Server issue), W686–W689. [CrossRef] [PubMed]
    [Google Scholar]
  45. Schurr T., Nadir E., Margalit H.. ( 1993; ). Identification and characterization of E. coli ribosomal binding sites by free energy computation. . Nucleic Acids Res 21:, 4019–4023. [CrossRef] [PubMed]
    [Google Scholar]
  46. Seo S. W., Yang J. S., Kim I., Yang J., Min B. E., Kim S., Jung G. Y.. ( 2013; ). Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. . Metab Eng 15:, 67–74. [CrossRef] [PubMed]
    [Google Scholar]
  47. Sharp P. M., Li W. H.. ( 1987; ). The Codon Adaptation Index – a measure of directional synonymous codon usage bias, and its potential applications. . Nucleic Acids Res 15:, 1281–1295. [CrossRef] [PubMed]
    [Google Scholar]
  48. Shine J., Dalgarno L.. ( 1974; ). The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. . Proc Natl Acad Sci U S A 71:, 1342–1346. [CrossRef] [PubMed]
    [Google Scholar]
  49. Sørensen M. A., Kurland C. G., Pedersen S.. ( 1989; ). Codon usage determines translation rate in Escherichia coli. . J Mol Biol 207:, 365–377. [CrossRef] [PubMed]
    [Google Scholar]
  50. Sun X. Y., Yang Q., Xia X.. ( 2013; ). An improved implementation of effective number of codons (n c). . Mol Biol Evol 30:, 191–196. [CrossRef] [PubMed]
    [Google Scholar]
  51. Supek F., Šmuc T.. ( 2010; ). On relevance of codon usage to expression of synthetic and natural genes in Escherichia coli. . Genetics 185:, 1129–1134. [CrossRef] [PubMed]
    [Google Scholar]
  52. Tuller T., Waldman Y. Y., Kupiec M., Ruppin E.. ( 2010; ). Translation efficiency is determined by both codon bias and folding energy. . Proc Natl Acad Sci U S A 107:, 3645–3650. [CrossRef] [PubMed]
    [Google Scholar]
  53. van Weringh A., Ragonnet-Cronin M., Pranckeviciene E., Pavon-Eternod M., Kleiman L., Xia X.. ( 2011; ). HIV-1 modulates the tRNA pool to improve translation efficiency. . Mol Biol Evol 28:, 1827–1834. [CrossRef] [PubMed]
    [Google Scholar]
  54. Vesper O., Amitai S., Belitsky M., Byrgazov K., Kaberdina A. C., Engelberg-Kulka H., Moll I.. ( 2011; ). Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. . Cell 147:, 147–157. [CrossRef] [PubMed]
    [Google Scholar]
  55. Vimberg V., Tats A., Remm M., Tenson T.. ( 2007; ). Translation initiation region sequence preferences in Escherichia coli. . BMC Mol Biol 8:, 100. [CrossRef] [PubMed]
    [Google Scholar]
  56. Woese C. R., Magrum L. J., Gupta R., Siegel R. B., Stahl D. A., Kop J., Crawford N., Brosius J., Gutell R. et al. ( 1980; ). Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. . Nucleic Acids Res 8:, 2275–2294. [CrossRef] [PubMed]
    [Google Scholar]
  57. Wright F.. ( 1990; ). The ‘effective number of codons’ used in a gene. . Gene 87:, 23–29. [CrossRef] [PubMed]
    [Google Scholar]
  58. Xia X.. ( 1998; ). How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae?. Genetics 149:, 37–44.[PubMed]
    [Google Scholar]
  59. Xia X.. ( 2007; ). An improved implementation of codon adaptation index. . Evol Bioinform Online 3:, 53–58.[PubMed]
    [Google Scholar]
  60. Xia X.. ( 2012; a). DNA replication and strand asymmetry in prokaryotic and mitochondrial genomes. . Curr Genomics 13:, 16–27. [CrossRef] [PubMed]
    [Google Scholar]
  61. Xia X.. ( 2012; b). Position weight matrix, gibbs sampler, and the associated significance tests in motif characterization and prediction. . Scientifica (Cairo) 2012:, 917540.[PubMed]
    [Google Scholar]
  62. Xia X.. ( 2012; c). Rapid evolution of animal mitochondria. . In Evolution in the Fast Lane: Rapidly Evolving Genes and Genetic Systems, pp. 73–82. Edited by Singh R. S., Xu J., Kulathinal R. J... Oxford:: Oxford University Press;. [CrossRef]
    [Google Scholar]
  63. Xia X.. ( 2013; a). Comparative Genomics. Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  64. Xia X.. ( 2013; b). dambe5: a comprehensive software package for data analysis in molecular biology and evolution. . Mol Biol Evol 30:, 1720–1728. [CrossRef] [PubMed]
    [Google Scholar]
  65. Xia X.. ( 2014; ). A major controversy in codon–anticodon adaptation resolved by a new codon usage index. . Genetics doi:10.1534/genetics.114.172106 [Epub ahead of print]. [CrossRef] [PubMed]
    [Google Scholar]
  66. Xia X., Holcik M.. ( 2009; ). Strong eukaryotic IRESs have weak secondary structure. . PLoS One 4:, e4136. [CrossRef] [PubMed]
    [Google Scholar]
  67. Xia X., Huang H., Carullo M., Betrán E., Moriyama E. N.. ( 2007; ). Conflict between translation initiation and elongation in vertebrate mitochondrial genomes. . PLoS One 2:, e227. [CrossRef] [PubMed]
    [Google Scholar]
  68. Xia X., MacKay V., Yao X., Wu J., Miura F., Ito T., Morris D. R.. ( 2011; ). Translation initiation: a regulatory role for poly(A) tracts in front of the AUG codon in Saccharomyces cerevisiae. . Genetics 189:, 469–478. [CrossRef] [PubMed]
    [Google Scholar]
  69. Yassin A., Fredrick K., Mankin A. S.. ( 2005; ). Deleterious mutations in small subunit ribosomal RNA identify functional sites and potential targets for antibiotics. . Proc Natl Acad Sci U S A 102:, 16620–16625. [CrossRef] [PubMed]
    [Google Scholar]
  70. Zhou T., Wilke C. O.. ( 2011; ). Reduced stability of mRNA secondary structure near the translation-initiation site in dsDNA viruses. . BMC Evol Biol 11:, 59. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000050
Loading
/content/journal/jgv/10.1099/vir.0.000050
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error