1887

Abstract

Flavivirus NS4A and NS4B are important membrane proteins for viral replication that are assumed to serve as the scaffold for the formation of replication complexes. We previously demonstrated that a single Lys-to-Arg mutation at position 79 in NS4A (NS4A-K79R) significantly impaired Japanese encephalitis virus (JEV) replication. In this study, the mutant virus was subject to genetic selection to search for the potential interaction between NS4A and other viral components. Sequencing of the recovered viruses revealed that, in addition to an A97E change in NS4A itself, a Y3N compensatory mutation located in NS4B had emerged from independent selections. Mutagenesis analysis, using a genome-length RNA and a replicon of JEV, demonstrated that both adaptive mutations greatly restored the replication defect caused by NS4A-K79R. Our results, for the first time to our knowledge, clearly showed the genetic interaction between NS4A and NS4B, although the mechanism underlying their interaction is unknown.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000044
2015-06-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/6/1264.html?itemId=/content/journal/jgv/10.1099/vir.0.000044&mimeType=html&fmt=ahah

References

  1. Brinton M. A., Dispoto J. H.. ( 1988; ). Sequence and secondary structure analysis of the 5′-terminal region of flavivirus genome RNA. . Virology 162:, 290–299. [CrossRef] [PubMed]
    [Google Scholar]
  2. Brinton M. A., Fernandez A. V., Dispoto J. H.. ( 1986; ). The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. . Virology 153:, 113–121. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chambers T. J., McCourt D. W., Rice C. M.. ( 1989; ). Yellow fever virus proteins NS2A, NS2B, and NS4B: identification and partial N-terminal amino acid sequence analysis. . Virology 169:, 100–109. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chambers T. J., Grakoui A., Rice C. M.. ( 1991; ). Processing of the yellow fever virus nonstructural polyprotein: a catalytically active NS3 proteinase domain and NS2B are required for cleavages at dibasic sites. . J Virol 65:, 6042–6050.[PubMed]
    [Google Scholar]
  5. Chang T. H., Liao C. L., Lin Y. L.. ( 2006; ). Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-kappaB activation. . Microbes Infect 8:, 157–171. [CrossRef] [PubMed]
    [Google Scholar]
  6. Dong H., Zhang B., Shi P. Y.. ( 2008; ). Flavivirus methyltransferase: a novel antiviral target. . Antiviral Res 80:, 1–10. [CrossRef] [PubMed]
    [Google Scholar]
  7. Endy T. P., Nisalak A.. ( 2002; ). Japanese encephalitis virus: ecology and epidemiology. . Curr Top Microbiol Immunol 267:, 11–48.[PubMed]
    [Google Scholar]
  8. Falgout B., Pethel M., Zhang Y. M., Lai C. J.. ( 1991; ). Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. . J Virol 65:, 2467–2475.[PubMed]
    [Google Scholar]
  9. Granseth E., von Heijne G., Elofsson A.. ( 2005; ). A study of the membrane-water interface region of membrane proteins. . J Mol Biol 346:, 377–385. [CrossRef] [PubMed]
    [Google Scholar]
  10. Guyatt K. J., Westaway E. G., Khromykh A. A.. ( 2001; ). Expression and purification of enzymatically active recombinant RNA-dependent RNA polymerase (NS5) of the flavivirus Kunjin. . J Virol Methods 92:, 37–44. [CrossRef] [PubMed]
    [Google Scholar]
  11. Herod M. R., Jones D. M., McLauchlan J., McCormick C. J.. ( 2012; ). Increasing rate of cleavage at boundary between non-structural proteins 4B and 5A inhibits replication of hepatitis C virus. . J Biol Chem 287:, 568–580. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kaufusi P. H., Kelley J. F., Yanagihara R., Nerurkar V. R.. ( 2014; ). Induction of endoplasmic reticulum-derived replication-competent membrane structures by West Nile virus non-structural protein 4B. . PLoS One 9:, e84040. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lee E., Stocks C. E., Amberg S. M., Rice C. M., Lobigs M.. ( 2000; ). Mutagenesis of the signal sequence of yellow fever virus prM protein: enhancement of signalase cleavage in vitro is lethal for virus production. . J Virol 74:, 24–32. [CrossRef] [PubMed]
    [Google Scholar]
  14. Li X. D., Li X. F., Ye H. Q., Deng C. L., Ye Q., Shan C., Shang B. D., Xu L. L., Li S. H. et al. ( 2014; a). Recovery of a chemically synthesized Japanese encephalitis virus reveals two critical adaptive mutations in NS2B and NS4A. . J Gen Virol 95:, 806–815. [CrossRef] [PubMed]
    [Google Scholar]
  15. Li X. D., Shan C., Deng C. L., Ye H. Q., Shi P. Y., Yuan Z. M., Gong P., Zhang B.. ( 2014; b). The interface between methyltransferase and polymerase of NS5 is essential for flavivirus replication. . PLoS Negl Trop Dis 8:, e2891. [CrossRef] [PubMed]
    [Google Scholar]
  16. Liang J., Adamian L., Jackups R. Jr. ( 2005; ). The membrane–water interface region of membrane proteins: structural bias and the anti-snorkeling effect. . Trends Biochem Sci 30:, 355–357. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lin C., Amberg S. M., Chambers T. J., Rice C. M.. ( 1993; ). Cleavage at a novel site in the NS4A region by the yellow fever virus NS2B-3 proteinase is a prerequisite for processing at the downstream 4A/4B signalase site. . J Virol 67:, 2327–2335.[PubMed]
    [Google Scholar]
  18. Lin R. J., Liao C. L., Lin E., Lin Y. L.. ( 2004; ). Blocking of the alpha interferon-induced Jak–Stat signaling pathway by Japanese encephalitis virus infection. . J Virol 78:, 9285–9294. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lindenbach B. D., Rice C. M.. ( 1997; ). Trans-complementation of yellow fever virus NS1 reveals a role in early RNA replication. . J Virol 71:, 9608–9617.[PubMed]
    [Google Scholar]
  20. Lindenbach B. D., Rice C. M.. ( 1999; ). Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. . J Virol 73:, 4611–4621.[PubMed]
    [Google Scholar]
  21. Miller S., Sparacio S., Bartenschlager R.. ( 2006; ). Subcellular localization and membrane topology of the Dengue virus type 2 Non-structural protein 4B. . J Biol Chem 281:, 8854–8863. [CrossRef] [PubMed]
    [Google Scholar]
  22. Miller S., Kastner S., Krijnse-Locker J., Bühler S., Bartenschlager R.. ( 2007; ). The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. . J Biol Chem 282:, 8873–8882. [CrossRef] [PubMed]
    [Google Scholar]
  23. Muñoz-Jordán J. L., Laurent-Rolle M., Ashour J., Martínez-Sobrido L., Ashok M., Lipkin W. I., García-Sastre A.. ( 2005; ). Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. . J Virol 79:, 8004–8013. [CrossRef] [PubMed]
    [Google Scholar]
  24. Murray C. L., Jones C. T., Rice C. M.. ( 2008; ). Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. . Nat Rev Microbiol 6:, 699–708. [CrossRef] [PubMed]
    [Google Scholar]
  25. Nemésio H., Palomares-Jerez F., Villalaín J.. ( 2012; ). NS4A and NS4B proteins from dengue virus: membranotropic regions. . Biochim Biophys Acta 1818:, 2818–2830. [CrossRef] [PubMed]
    [Google Scholar]
  26. Nestorowicz A., Chambers T. J., Rice C. M.. ( 1994; ). Mutagenesis of the yellow fever virus NS2A/2B cleavage site: effects on proteolytic processing, viral replication, and evidence for alternative processing of the NS2A protein. . Virology 199:, 114–123. [CrossRef] [PubMed]
    [Google Scholar]
  27. Roosendaal J., Westaway E. G., Khromykh A., Mackenzie J. M.. ( 2006; ). Regulated cleavages at the West Nile virus NS4A-2K-NS4B junctions play a major role in rearranging cytoplasmic membranes and Golgi trafficking of the NS4A protein. . J Virol 80:, 4623–4632. [CrossRef] [PubMed]
    [Google Scholar]
  28. Segrest J. P., De Loof H., Dohlman J. G., Brouillette C. G., Anantharamaiah G. M.. ( 1990; ). Amphipathic helix motif: classes and properties. . Proteins 8:, 103–117. [CrossRef] [PubMed]
    [Google Scholar]
  29. Shi P. Y.. ( 2014; ). Structural biology. Unraveling a flavivirus enigma. . Science 343:, 849–850. [CrossRef] [PubMed]
    [Google Scholar]
  30. Shi P. Y., Brinton M. A., Veal J. M., Zhong Y. Y., Wilson W. D.. ( 1996; ). Evidence for the existence of a pseudoknot structure at the 3′ terminus of the flavivirus genomic RNA. . Biochemistry 35:, 4222–4230. [CrossRef] [PubMed]
    [Google Scholar]
  31. Shi P. Y., Tilgner M., Lo M. K.. ( 2002; ). Construction and characterization of subgenomic replicons of New York strain of West Nile virus. . Virology 296:, 219–233. [CrossRef] [PubMed]
    [Google Scholar]
  32. Shiryaev S. A., Chernov A. V., Aleshin A. E., Shiryaeva T. N., Strongin A. Y.. ( 2009; ). NS4A regulates the ATPase activity of the NS3 helicase: a novel cofactor role of the non-structural protein NS4A from West Nile virus. . J Gen Virol 90:, 2081–2085. [CrossRef] [PubMed]
    [Google Scholar]
  33. Stern O., Hung Y. F., Valdau O., Yaffe Y., Harris E., Hoffmann S., Willbold D., Sklan E. H.. ( 2013; ). An N-terminal amphipathic helix in dengue virus nonstructural protein 4A mediates oligomerization and is essential for replication. . J Virol 87:, 4080–4085. [CrossRef] [PubMed]
    [Google Scholar]
  34. Tajima S., Takasaki T., Kurane I.. ( 2011; ). Restoration of replication-defective dengue type 1 virus bearing mutations in the N-terminal cytoplasmic portion of NS4A by additional mutations in NS4B. . Arch Virol 156:, 63–69. [CrossRef] [PubMed]
    [Google Scholar]
  35. Takegami T., Sakamuro D., Furukawa T.. ( 1995; ). Japanese encephalitis virus nonstructural protein NS3 has RNA binding and ATPase activities. . Virus Genes 9:, 105–112. [CrossRef] [PubMed]
    [Google Scholar]
  36. Teo C. S., Chu J. J.. ( 2014; ). Cellular vimentin regulates construction of dengue virus replication complexes through interaction with NS4A protein. . J Virol 88:, 1897–1913. [CrossRef] [PubMed]
    [Google Scholar]
  37. Umareddy I., Chao A., Sampath A., Gu F., Vasudevan S. G.. ( 2006; ). Dengue virus NS4B interacts with NS3 and dissociates it from single-stranded RNA. . J Gen Virol 87:, 2605–2614. [CrossRef] [PubMed]
    [Google Scholar]
  38. Yi Z., Yuan Z., Rice C. M., MacDonald M. R.. ( 2012; ). Flavivirus replication complex assembly revealed by DNAJC14 functional mapping. . J Virol 86:, 11815–11832. [CrossRef] [PubMed]
    [Google Scholar]
  39. Youn S., Li T., McCune B. T., Edeling M. A., Fremont D. H., Cristea I. M., Diamond M. S.. ( 2012; ). Evidence for a genetic and physical interaction between nonstructural proteins NS1 and NS4B that modulates replication of West Nile virus. . J Virol 86:, 7360–7371. [CrossRef] [PubMed]
    [Google Scholar]
  40. Yu L., Takeda K., Markoff L.. ( 2013; ). Protein–protein interactions among West Nile non-structural proteins and transmembrane complex formation in mammalian cells. . Virology 446:, 365–377. [CrossRef] [PubMed]
    [Google Scholar]
  41. Zhang B., Dong H., Stein D. A., Iversen P. L., Shi P. Y.. ( 2008; ). West Nile virus genome cyclization and RNA replication require two pairs of long-distance RNA interactions. . Virology 373:, 1–13. [CrossRef] [PubMed]
    [Google Scholar]
  42. Zou J., Xie X., Lee T., Chandrasekaran R., Reynaud A., Yap L., Wang Q. Y., Dong H., Kang C. et al. ( 2014; ). Dimerization of flavivirus NS4B protein. . J Virol 88:, 3379–3391. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000044
Loading
/content/journal/jgv/10.1099/vir.0.000044
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error