1887

Abstract

Adeno-associated virus (AAV) type 5 represents the genetically most distant AAV serotype and the only one isolated directly from human tissue. Seroepidemiological evidence suggests herpes simplex virus (HSV) as a helper virus for human AAV5 infections, underlining the relevance of the AAV–herpesvirus relationship. In this study we analysed, for the first time, HSV helper functions for productive AAV5 replication, and compared these to AAV2. Using a combination of HSV strains and plasmids for individual genes, the previously defined HSV helper functions for AAV2 replication were shown to induce AAV5 gene expression, DNA replication and production of infectious progeny. The helper functions comprise the replication genes for ICP8 (UL29), helicase–primase (UL5/8/52), and DNA polymerase (UL30/42). HSV immediate-early genes for ICP0 and ICP4 further enhanced AAV5 replication, mainly by induction of gene expression. In the presence of HSV helper functions, AAV5 Rep co-localized with ICP8 in nuclear replication compartments, and HSV alkaline exonuclease (UL12) enhanced AAV5 replication, similarly to AAV2. UL12, in combination with ICP8, was shown to induce DNA strand exchange on partially double-stranded templates to resolve and repair concatemeric HSV replication intermediates. Similarly, concatemeric AAV replication intermediates appeared to be processed to yield AAV unit-length molecules, ready for AAV packaging. Taken together, our findings show that productive AAV5 replication is promoted by the same combination of HSV helper functions as AAV2.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000034
2015-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/4/840.html?itemId=/content/journal/jgv/10.1099/vir.0.000034&mimeType=html&fmt=ahah

References

  1. Alazard-Dany N., Nicolas A., Ploquin A., Strasser R., Greco A., Epstein A. L., Fraefel C., Salvetti A. 2009; Definition of herpes simplex virus type 1 helper activities for adeno-associated virus early replication events. PLoS Pathog 5:e1000340 [View Article][PubMed]
    [Google Scholar]
  2. Alex M., Weger S., Mietzsch M., Slanina H., Cathomen T., Heilbronn R. 2012; DNA-binding activity of adeno-associated virus Rep is required for inverted terminal repeat-dependent complex formation with herpes simplex virus ICP8. J Virol 86:2859–2863 [View Article][PubMed]
    [Google Scholar]
  3. Atchison R. W., Casto B. C., Hammon W. M. 1965; Adenovirus-associated defective virus particles. Science 149:754–756 [View Article][PubMed]
    [Google Scholar]
  4. Balasubramanian N., Bai P., Buchek G., Korza G., Weller S. K. 2010; Physical interaction between the herpes simplex virus type 1 exonuclease, UL12, and the DNA double-strand break-sensing MRN complex. J Virol 84:12504–12514 [View Article][PubMed]
    [Google Scholar]
  5. Bantel-Schaal U., zur Hausen H. 1984; Characterization of the DNA of a defective human parvovirus isolated from a genital site. Virology 134:52–63 [View Article][PubMed]
    [Google Scholar]
  6. Beaton A., Palumbo P., Berns K. I. 1989; Expression from the adeno-associated virus p5 and p19 promoters is negatively regulated in trans by the Rep protein. J Virol 63:4450–4454[PubMed]
    [Google Scholar]
  7. Biswas N., Weller S. K. 2001; The UL5 and UL52 subunits of the herpes simplex virus type 1 helicase-primase subcomplex exhibit a complex interdependence for DNA binding. J Biol Chem 276:17610–17619 [View Article][PubMed]
    [Google Scholar]
  8. Blacklow N. R., Hoggan M. D., Rowe W. P. 1967; Isolation of adenovirus-associated viruses from man. Proc Natl Acad Sci U S A 58:1410–1415 [View Article][PubMed]
    [Google Scholar]
  9. Buller R. M. L., Janik J. E., Sebring E. D., Rose J. A. 1981; Herpes simplex virus type 1 and 2 completely help adenovirus-associated virus replication. J Virol 10:241–247
    [Google Scholar]
  10. Chang L. S., Shi Y., Shenk T. 1989; Adeno-associated virus P5 promoter contains an adenovirus E1A-inducible element and a binding site for the major late transcription factor. J Virol 63:3479–3488[PubMed]
    [Google Scholar]
  11. Chen Y., Bai P., Mackay S., Korza G., Carson J. H., Kuchta R. D., Weller S. K. 2011; Herpes simplex virus type 1 helicase-primase: DNA binding and consequent protein oligomerization and primase activation. J Virol 85:968–978 [View Article][PubMed]
    [Google Scholar]
  12. Chiorini J. A., Afione S., Kotin R. M. 1999a; Adeno-associated virus (AAV) type 5 Rep protein cleaves a unique terminal resolution site compared with other AAV serotypes. J Virol 73:4293–4298[PubMed]
    [Google Scholar]
  13. Chiorini J. A., Kim F., Yang L., Kotin R. M. 1999b; Cloning and characterization of adeno-associated virus type 5. J Virol 73:1309–1319[PubMed]
    [Google Scholar]
  14. Farris K. D., Pintel D. J. 2010; Adeno-associated virus type 5 utilizes alternative translation initiation to encode a small Rep40-like protein. J Virol 84:1193–1197 [View Article][PubMed]
    [Google Scholar]
  15. Fasina O., Pintel D. J. 2013; The adeno-associated virus type 5 small Rep proteins expressed via internal translation initiation are functional. J Virol 87:296–303 [View Article][PubMed]
    [Google Scholar]
  16. Geoffroy M. C., Epstein A. L., Toublanc E., Moullier P., Salvetti A. 2004; Herpes simplex virus type 1 ICP0 protein mediates activation of adeno-associated virus type 2 rep gene expression from a latent integrated form. J Virol 78:10977–10986 [View Article][PubMed]
    [Google Scholar]
  17. Georg-Fries B., Biederlack S., Wolf J., zur Hausen H. 1984; Analysis of proteins, helper dependence, and seroepidemiology of a new human parvovirus. Virology 134:64–71 [View Article][PubMed]
    [Google Scholar]
  18. Heilbronn R., zur Hausen H. 1989; A subset of herpes simplex virus replication genes induces DNA amplification within the host cell genome. J Virol 63:3683–3692[PubMed]
    [Google Scholar]
  19. Heilbronn R., Weller S. K., zur Hausen H. 1990; Herpes simplex virus type 1 mutants for the origin-binding protein induce DNA amplification in the absence of viral replication. Virology 179:478–481 [View Article][PubMed]
    [Google Scholar]
  20. Heilbronn R., Engstler M., Weger S., Krahn A., Schetter C., Boshart M. 2003; ssDNA-dependent colocalization of adeno-associated virus Rep and herpes simplex virus ICP8 in nuclear replication domains. Nucleic Acids Res 31:6206–6213 [View Article][PubMed]
    [Google Scholar]
  21. Hickman A. B., Ronning D. R., Kotin R. M., Dyda F. 2002; Structural unity among viral origin binding proteins: crystal structure of the nuclease domain of adeno-associated virus Rep. Mol Cell 10:327–337 [View Article][PubMed]
    [Google Scholar]
  22. Hickman A. B., Ronning D. R., Perez Z. N., Kotin R. M., Dyda F. 2004; The nuclease domain of adeno-associated virus Rep coordinates replication initiation using two distinct DNA recognition interfaces. Mol Cell 13:403–414 [View Article][PubMed]
    [Google Scholar]
  23. Hoggan M. D., Blacklow N. R., Rowe W. P. 1966; Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc Natl Acad Sci U S A 55:1467–1474 [View Article][PubMed]
    [Google Scholar]
  24. Hüser D., Gogol-Döring A., Lutter T., Weger S., Winter K., Hammer E. M., Cathomen T., Reinert K., Heilbronn R. 2010; Integration preferences of wildtype AAV-2 for consensus Rep-binding sites at numerous loci in the human genome. PLoS Pathog 6:e1000985 [View Article][PubMed]
    [Google Scholar]
  25. Hüser D., Gogol-Döring A., Chen W., Heilbronn R. 2014; Adeno-associated virus type 2 wild-type and vector-mediated genomic integration profiles of human diploid fibroblasts analyzed by third-generation PacBio DNA sequencing. J Virol 88:11253–11263 [View Article][PubMed]
    [Google Scholar]
  26. Kyöstiö S. R. M., Owens R. A., Weitzman M. D., Antoni B. A., Chejanovsky N., Carter B. J. 1994; Analysis of adeno-associated virus (AAV) wild-type and mutant Rep proteins for their abilities to negatively regulate AAV p5 and p19 mRNA levels. J Virol 68:2947–2957[PubMed]
    [Google Scholar]
  27. Livingston C. M., DeLuca N. A., Wilkinson D. E., Weller S. K. 2008; Oligomerization of ICP4 and rearrangement of heat shock proteins may be important for herpes simplex virus type 1 prereplicative site formation. J Virol 82:6324–6336 [View Article][PubMed]
    [Google Scholar]
  28. Maggin J. E., James J. A., Chappie J. S., Dyda F., Hickman A. B. 2012; The amino acid linker between the endonuclease and helicase domains of adeno-associated virus type 5 Rep plays a critical role in DNA-dependent oligomerization. J Virol 86:3337–3346 [View Article][PubMed]
    [Google Scholar]
  29. Malik A. K., Martinez R., Muncy L., Carmichael E. P., Weller S. K. 1992; Genetic analysis of the herpes simplex virus type 1 UL9 gene: isolation of a LacZ insertion mutant and expression in eukaryotic cells. Virology 190:702–715 [View Article][PubMed]
    [Google Scholar]
  30. McPherson R. A., Rosenthal L. J., Rose J. A. 1985; Human cytomegalovirus completely helps adeno-associated virus replication. Virology 147:217–222 [View Article][PubMed]
    [Google Scholar]
  31. Muzyczka N., Berns K. I. 2001; Parvoviridae: the viruses and their replication. In Fields Virology pp. 2327–2359 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott;
    [Google Scholar]
  32. Nash K., Chen W., Muzyczka N. 2008; Complete in vitro reconstitution of adeno-associated virus DNA replication requires the minichromosome maintenance complex proteins. J Virol 82:1458–1464 [View Article][PubMed]
    [Google Scholar]
  33. Nayak R., Pintel D. J. 2007; Positive and negative effects of adenovirus type 5 helper functions on adeno-associated virus type 5 (AAV5) protein accumulation govern AAV5 virus production. J Virol 81:2205–2212 [View Article][PubMed]
    [Google Scholar]
  34. Nicolas A., Alazard-Dany N., Biollay C., Arata L., Jolinon N., Kuhn L., Ferro M., Weller S. K., Epstein A. L.other authors 2010; Identification of Rep-associated factors in herpes simplex virus type 1-induced adeno-associated virus type 2 replication compartments. J Virol 84:8871–8887 [View Article][PubMed]
    [Google Scholar]
  35. Parks W. P., Melnick J. L., Rongey R., Mayor H. D. 1967; Physical assay and growth cycle studies of a defective adeno-satellite virus. J Virol 1:171–180[PubMed]
    [Google Scholar]
  36. Qiu J., Nayak R., Tullis G. E., Pintel D. J. 2002; Characterization of the transcription profile of adeno-associated virus type 5 reveals a number of unique features compared to previously characterized adeno-associated viruses. J Virol 76:12435–12447 [View Article][PubMed]
    [Google Scholar]
  37. Reuven N. B., Staire A. E., Myers R. S., Weller S. K. 2003; The herpes simplex virus type 1 alkaline nuclease and single-stranded DNA binding protein mediate strand exchange in vitro. J Virol 77:7425–7433 [View Article][PubMed]
    [Google Scholar]
  38. Samulski R. J., Berns K. I., Tan M., Muzyczka N. 1982; Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci U S A 79:2077–2081 [View Article][PubMed]
    [Google Scholar]
  39. Schnepp B. C., Jensen R. L., Chen C. L., Johnson P. R., Clark K. R. 2005; Characterization of adeno-associated virus genomes isolated from human tissues. J Virol 79:14793–14803 [View Article][PubMed]
    [Google Scholar]
  40. Schumacher A. J., Mohni K. N., Kan Y., Hendrickson E. A., Stark J. M., Weller S. K. 2012; The HSV-1 exonuclease, UL12, stimulates recombination by a single strand annealing mechanism. PLoS Pathog 8:e1002862 [View Article][PubMed]
    [Google Scholar]
  41. Slanina H., Weger S., Stow N. D., Kuhrs A., Heilbronn R. 2006; Role of the herpes simplex virus helicase-primase complex during adeno-associated virus DNA replication. J Virol 80:5241–5250 [View Article][PubMed]
    [Google Scholar]
  42. Srivastava A., Lusby E. W., Berns K. I. 1983; Nucleotide sequence and organization of the adeno-associated virus 2 genome. J Virol 45:555–564[PubMed]
    [Google Scholar]
  43. Stow N. D., Brown G., Cross A. M., Abbotts A. P. 1998; Identification of residues within the herpes simplex virus type 1 origin-binding protein that contribute to sequence-specific DNA binding. Virology 240:183–192 [View Article][PubMed]
    [Google Scholar]
  44. Thomson B. J., Weindler F. W., Gray D., Schwaab V., Heilbronn R. 1994; Human herpesvirus 6 (HHV-6) is a helper virus for adeno-associated virus type 2 (AAV-2) and the AAV-2 rep gene homologue in HHV-6 can mediate AAV-2 DNA replication and regulate gene expression. Virology 204:304–311 [View Article][PubMed]
    [Google Scholar]
  45. Weindler F. W., Heilbronn R. 1991; A subset of herpes simplex virus replication genes provides helper functions for productive adeno-associated virus replication. J Virol 65:2476–2483[PubMed]
    [Google Scholar]
  46. Weller S. K., Coen D. M. 2012; Herpes simplex viruses: mechanisms of DNA replication. Cold Spring Harb Perspect Biol 4:a013011 [View Article][PubMed]
    [Google Scholar]
  47. Wilkinson D. E., Weller S. K. 2004; Recruitment of cellular recombination and repair proteins to sites of herpes simplex virus type 1 DNA replication is dependent on the composition of viral proteins within prereplicative sites and correlates with the induction of the DNA damage response. J Virol 78:4783–4796 [View Article][PubMed]
    [Google Scholar]
  48. Winter K., von Kietzell K., Heilbronn R., Pozzuto T., Fechner H., Weger S. 2012; Roles of E4orf6 and VA I RNA in adenovirus-mediated stimulation of human parvovirus B19 DNA replication and structural gene expression. J Virol 86:5099–5109 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000034
Loading
/content/journal/jgv/10.1099/vir.0.000034
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error